![]()
AMBIENTUM BIOETHICA BIOLOGIA CHEMIA DIGITALIA DRAMATICA EDUCATIO ARTIS GYMNAST. ENGINEERING EPHEMERIDES EUROPAEA GEOGRAPHIA GEOLOGIA HISTORIA HISTORIA ARTIUM INFORMATICA IURISPRUDENTIA MATHEMATICA MUSICA NEGOTIA OECONOMICA PHILOLOGIA PHILOSOPHIA PHYSICA POLITICA PSYCHOLOGIA-PAEDAGOGIA SOCIOLOGIA THEOLOGIA CATHOLICA THEOLOGIA CATHOLICA LATIN THEOLOGIA GR.-CATH. VARAD THEOLOGIA ORTHODOXA THEOLOGIA REF. TRANSYLVAN
|
|||||||
Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului. |
|||||||
STUDIA MATHEMATICA - Ediţia nr.4 din 2022 | |||||||
Articol: |
BOOK REVIEW: ALEXEY R. ALIMOV AND IGOR’ G. TSAR’KOV, GEOMETRIC APPROXIMATION THEORY, SPRINGER MONOGRAPHS IN MATHEMATICS. CHAM: SPRINGER 2022, XXI+508 P. ISBN: 978-3-030-90950-5/HBK; 978-3-030-90953-6/PBK; 978-3-030-90951-2/EBOOK). Autori: ŞTEFAN COBZAŞ. |
||||||
Rezumat: Published Online: 2022-12-02 Published Print: 2022-12-30 pp. 905-907 VIEW PDF FULL PDF The origins of abstract approximation theory can be traced back to the years 50s of the 19th century when P.L. Chebyshev considered the problem of uniform approximation of continuous functions by polynomials in connection with some technical problems (the construction of some mechanisms as „parallelograms” which transform a circular motion into a rectilinear one, devices used for steam engines). This proves that approximation theory had, and still have, important applications in various scientific and technical domains. Since then the domain developed in many directions by the contributions of many mathematicians and applied scientists. The present book contains an encyclopedic presentations of a lot of topics in approximation theory in concrete as well as in general Banach spaces, starting with some classical and ending with some very recent results. |
|||||||
![]() |
|||||||