Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI

În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului.

 
       
         
    STUDIA MATHEMATICA - Ediţia nr.4 din 2018  
         
  Articol:   THE FABER POLYNOMIAL EXPANSION METHOD AND ITS APPLICATION TO THE GENERAL COEFFICIENT PROBLEM FOR SOME SUBCLASSES OF BI-UNIVALENT FUNCTIONS ASSOCIATED WITH A CERTAIN q-INTEGRAL OPERATOR.

Autori:  HARI MOHAN SRIVASTAVA, SHAHID KHAN, QAZI ZAHOOR AHMAD, NAZAR KHAN, SAQIB HUSSAIN.
 
       
         
  Rezumat:  
In our present investigation, we first introduce several new subclasses of analytic and bi-univalent functions by using a certain q-integral operator in the open unit disk U = {z : z ∈ C and |z| ˂ 1}. By applying the Faber polynomial expansion method as well as the q-analysis, we then determine bounds for the nth coefficient in the Taylor-Maclaurin series expansion for functions in each of these newly-defined analytic and bi-univalent function classes subject to a gap series condition. We also highlight some known consequences of our main results.

Keywords: Analytic functions, univalent functions, Taylor-Maclaurin series rep- resentation, Faber polynomials, bi-inivalent functions, q-derivative operator, q- hypergeometric functions, q-integral operators.
 
         
     
         
         
      Revenire la pagina precedentă