Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului. STUDIA MATHEMATICA - Ediţia nr.3 din 2010 Articol: STARLIKE FUNCTIONS WITH REGULAR REFRACTION PROPERTY.Autori:  PETRU T. MOCANU. Rezumat:  Let C : z = z(t), t Є [a, b], be a smooth Jordan curve of the class C2 and let f be a complex univalent function of the class C1 in a domain which contains the curve C together with its interior. Suppose that the origin lies inside of C and f(0) = 0. Let Γ = f(C) and suppose that Γ is starlike with respect to the origin. Let consider the radius vector from 0 to a point w Є Γ and let be the outer normal to Γ at the point w = f[z(t)]. Let denote by the angle between and and consider the vector starting from w, such that sin Ψ = γ sin ω, where and γ is a positive number. We say that the starlike curve Γ = f(C) has the regular refraction property, with index γ, if the argument of the vector is an increasing function of t Є [a, b]. The concept of regular refraction property was introduced in  and developed in , , ,  and . We mention that this concept is closed to the concept of α-convexity introduced in . In this paper we continue to study this geometric property by introducing the concept of regular refraction interval of a given function. We also give a significant example. Key words and phrases. Starlike functions, regular refraction  