Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI

În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului.

 
       
         
    STUDIA MATHEMATICA - Ediţia nr.2 din 2015  
         
  Articol:   ADAPTIVE ALGORITHM FOR POLYHEDRAL APPROXIMATION OF 3D SOLIDS.

Autori:  .
 
       
         
  Rezumat:  

In this paper we discuss theoretical foundations of developing general methods for volume-based approximation of three-dimensional solids. We construct an iterative method that can be used for approximation of regular subsets of Rd (d Î N) in particular R3. We will define solid meshes and investigate the connection between solid meshes, regular sets and polyhedra. First the general description of the method will be given. The main idea of our algorithm is a kind of space partitioning with increasing atomic s-algebra sequences. In every step one atom will be divided into two nonempty atoms. We define a volume based distance metric and we give sufficient conditions for the convergence and monotonicity of the method. We show a possible application, a polyhedral approximation (or approximate convex decomposition) of triangular meshes.

Mathematics Subject Classification (2010): 41A35, 41A63.

Keywords: Solid mesh, regular sets, space partitioning, orthogonal projection, best approximation.

 
         
     
         
         
      Revenire la pagina precedentă