Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI

În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului.

 
       
         
    STUDIA MATHEMATICA - Ediţia nr.2 din 2015  
         
  Articol:   CONSTRUCTION AND APPLICATIONS OF GAUSSIAN QUADRATURES WITH NONCLASSICAL AND EXOTIC WEIGHT FUNCTIONS.

Autori:  GRADIMIR V. MILOVANOVIĆ.
 
       
         
  Rezumat:  

In 1814 Carl Friedrich Gauß (1777–1855) developed his famous method of numerical integration which dramatically improves the earlier method of Isaac Newton (1643–1727) from 1676. Beside the some historical details in this survey, a formulation of this classical theory in modern terminology using theory of orthogonlity on real line, as well as the characterization, existence and uniqueness of these formulas, are presented. A special attention is devoted to the algorithms for constructing such quadrature formulas for nonclassical weight functions, their numerical stability and the corresponding software. Finally, some recent progress in this subject, as well as new important applications of these methods in several different directions (distributions in statistics and physics, summation of slowly convergent series, etc.) are presented.

Mathematics Subject Classification (2010): 33C47, 42C05, 41A55, 65D30, 65D32.

Keywords: Orthogonal polynomials, moments, recursion coefficients, Gaussian quadrature, weight function.

 
         
     
         
         
      Revenire la pagina precedentă