Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI

În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului.

 
       
         
    STUDIA MATHEMATICA - Ediţia nr.2 din 2015  
         
  Articol:   OPTIMAL CUBIC LAGRANGE INTERPOLATION: EXTREMAL NODE SYSTEMS WITH MINIMAL LEBESGUE CONSTANT.

Autori:  .
 
       
         
  Rezumat:   In the theory of interpolation of continuous functions by algebraic polynomials of degree at most n − 1 2, the search for explicit analytic expressions of extremal node systems which lead to the minimal Lebesgue constant is still anintriguing topic in mathematics today [33]. The first non-trivial case n − 1 = 2(quadratic interpolation) has been completely resolved, even in two alternative fashions, see [25], [27]. In the present paper we proceed to completely resolve thecubic case (n − 1 = 3) of optimal polynomial Lagrange interpolation on the unit interval [−1, 1]. We will provide two explicit analytic expressions for the uncountable infinitely many extremal node systems x*1 < x*2 < x*3 < x*4 in [−1, 1] which all lead to the (known) minimal Lebesgue constant of cubic Lagrange interpolationon [−1, 1]. The descriptions of the extremal node systems (which need notbe zero-symmetric) resemble the solutions for the quadratic case and incorporate two intrinsic constants expressed by radicals, of which one constant looks particularly intricate. Our results encompass earlier related work provided in [17], [23],[24], [29], [30] and are guided by symbolic computation. 
Mathematics Subject Classification (2010): 05C35, 33F10, 41A05, 41A44, 65D05,68W30.
Keywords: Constant, cubic, extremal, interpolation, Lagrange interpolation, Lebesgue constant, minimal, node, node system, optimal, point, polynomial, symboliccomputation.
 
         
     
         
         
      Revenire la pagina precedentă