Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI

În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului.

 
       
         
    STUDIA MATHEMATICA - Ediţia nr.2 din 2008  
         
  Articol:   HEAT TRANSFER IN AXISYMMETRIC STAGNATION FLOW ON A THIN CYLINDER.

Autori:  CORNELIA REVNIC, TEODOR GROŞAN, IOAN POP.
 
       
         
  Rezumat:   The steady axisymetric stagnation flow and heat transfer on a thin infinite cylinder of radius a is studied in this paper. Both cases of constant wall temperature and constant wall heat flux are considered. Using similarity variables the governing partial differential equations are transformed into ordinary differential equations. The resulting set of two equations is solved numerically using Runge-Kutta method combined with a shooting technique. For the special case of the Reynolds number Re >> 1 (boundary layer approximation), we obtained an asymptotic solution which include the Hiemenz solution. The present results are compared in some particular cases with existing results from the open literature and with the asymptotic approximation, and we found a very good agreement. It is shown that the Nusselt number and the skin friction increase and theboundary layer thickness decreases with the increase of the Reynolds number. Some graphs for the velocity and temperature profiles are presented. Also, tables with values related to the skin friction and Nusselt numberare given.  
         
     
         
         
      Revenire la pagina precedentă