![]()
AMBIENTUM BIOETHICA BIOLOGIA CHEMIA DIGITALIA DRAMATICA EDUCATIO ARTIS GYMNAST. ENGINEERING EPHEMERIDES EUROPAEA GEOGRAPHIA GEOLOGIA HISTORIA HISTORIA ARTIUM INFORMATICA IURISPRUDENTIA MATHEMATICA MUSICA NEGOTIA OECONOMICA PHILOLOGIA PHILOSOPHIA PHYSICA POLITICA PSYCHOLOGIA-PAEDAGOGIA SOCIOLOGIA THEOLOGIA CATHOLICA THEOLOGIA CATHOLICA LATIN THEOLOGIA GR.-CATH. VARAD THEOLOGIA ORTHODOXA THEOLOGIA REF. TRANSYLVAN
|
|||||||
Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului. |
|||||||
STUDIA MATHEMATICA - Ediţia nr.1 din 2023 | |||||||
Articol: |
EXISTENCE RESULTS FOR DIRICHLET DOUBLE PHASE DIFFERENTIAL INCLUSIONS. Autori: NICUȘOR COSTEA, SHENGDA ZENG. |
||||||
Rezumat: DOI: 10.24193/subbmath.2023.1.04 Published Online: 2023-03-20 Published Print: 2023-04-30 pp. 51-61 VIEW PDF FULL PDF In this paper we consider a class of double phase differential inclusions of the type................. where Ω ⊂ RN , with N ≥ 2, is a bounded domain with Lipschitz boundary, f (x, t) is measurable w.r.t. the first variable on Ω and locally Lipschitz w.r.t. the second variable and ∂2 f (x,·) stands for the Clarke subdifferential of t 1→ f (x, t). The variational formulation of the problem gives rise to a so-called hemivariational inequality and the corresponding energy functional is not differentiable, but only locally Lipschitz. We use nonsmooth critical point theory to prove the existence of at least one weak solution, provided the ∂2 f (x,·) satisfies an appropriate growth condition. Mathematics Subject Classification (2010): 35J60, 35D30, 35A15, 49J40, 49J52. Keywords: Differential inclusion, double phase problems, Musielak-Orlicz-Sobolev spaces, nonsmooth critical point theory, hemivariational inequality. |
|||||||
![]() |
|||||||