AMBIENTUM BIOETHICA BIOLOGIA CHEMIA DIGITALIA DRAMATICA EDUCATIO ARTIS GYMNAST. ENGINEERING EPHEMERIDES EUROPAEA GEOGRAPHIA GEOLOGIA HISTORIA HISTORIA ARTIUM INFORMATICA IURISPRUDENTIA MATHEMATICA MUSICA NEGOTIA OECONOMICA PHILOLOGIA PHILOSOPHIA PHYSICA POLITICA PSYCHOLOGIA-PAEDAGOGIA SOCIOLOGIA THEOLOGIA CATHOLICA THEOLOGIA CATHOLICA LATIN THEOLOGIA GR.-CATH. VARAD THEOLOGIA ORTHODOXA THEOLOGIA REF. TRANSYLVAN
|
|||||||
Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului. |
|||||||
STUDIA MATHEMATICA - Ediţia nr.1 din 2021 | |||||||
Articol: |
KÁLMÁN’S FILTERING TECHNIQUE IN STRUCTURAL EQUATION MODELING. Autori: MARIANNA BOLLA, FATMA ABDELKHALEK. |
||||||
Rezumat: DOI: 10.24193/subbmath.2021.1.15 Published Online: 2021-03-20 Published Print: 2021-03-30 pp. 179-196 VIEW PDF FULL PDF ABSTRACT. Structural equation modeling finds linear relations between exogenous and endogenous latent and observable random vectors. In this paper, the model equations are considered as a linear dynamical system to which the celebrated R. E. Kálmán’s filtering technique is applicable. An artificial intelligence is developed, where the partial least squares algorithm of H. Wold and the block Cholesky decomposition of H. Kiiveri et al. are combined to estimate the parameter matrices from a training sample. Then the filtering technique introduced is capable to predict the latent variable case values along with the prediction error covariance matrices in the test sample. The recursion goes from case to case along the test sample, without having to reestimate the parameter matrices. The algorithm is illustrated on real life sociological data. Mathematics Subject Classification (2010): 62H05, 62P25, 68T99. Keywords: Structural equation modeling, linear dynamical systems, Kálmán’s filtering, artificial intelligence, application to social sciences. |
|||||||