Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI

În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului.

 
       
         
    STUDIA INFORMATICA - Ediţia nr.3 din 2010  
         
  Articol:   ALIGNMENT OF CUSTOM STANDARDS BY MACHINE LEARNING ALGORITHMS.

Autori:  ALEXANDRINA ROGOZAN, LAURA DIOŞAN.
 
       
         
  Rezumat:  Building an efficient model for automatic alignment of terminologies would bring a significant improvement to the information retrieval process. We have developed and compared two machine learning based algorithms whose aim is to align 2 custom standards built on a 3 level taxonomy, using kNN and SVM classifiers that work on a vector representation consisting of several similarity measures. The weights utilized by the kNN were optimized with an evolutionary algorithm, while the SVM classifier’s hyper-parameters were optimized with a grid search algorithm. The database used for train was semi automatically obtained by using the Coma++tool. The performance of our aligners is shown by the results obtained on the test set.

Key words and phrases. Concept alignment, Machine Learning, Binary Classification, Support Vector Machine.

 
         
     
         
         
      Revenire la pagina precedentă