AMBIENTUM BIOETHICA BIOLOGIA CHEMIA DIGITALIA DRAMATICA EDUCATIO ARTIS GYMNAST. ENGINEERING EPHEMERIDES EUROPAEA GEOGRAPHIA GEOLOGIA HISTORIA HISTORIA ARTIUM INFORMATICA IURISPRUDENTIA MATHEMATICA MUSICA NEGOTIA OECONOMICA PHILOLOGIA PHILOSOPHIA PHYSICA POLITICA PSYCHOLOGIA-PAEDAGOGIA SOCIOLOGIA THEOLOGIA CATHOLICA THEOLOGIA CATHOLICA LATIN THEOLOGIA GR.-CATH. VARAD THEOLOGIA ORTHODOXA THEOLOGIA REF. TRANSYLVAN
|
|||||||
Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului. |
|||||||
STUDIA INFORMATICA - Ediţia nr.2 din 2019 | |||||||
Articol: |
PREDICTING RELIABILITY OF OBJECT-ORIENTED SYSTEMS USING A NEURAL NETWORK. Autori: ALISA BUDUR, CAMELIA ȘERBAN, ANDREEA VESCAN. |
||||||
Rezumat: DOI: 10.24193/subbi.2019.2.05 Published Online: 2019-12-30 Published Print: 2019-12-30 pp. 65-79 VIEW PDF: PDF One of the most important quality attributes of computer systems is reliability, which addresses the ability of the software to perform its required function under stated conditions for a stated period of time. The paper aim is twofold. Firstly, the proposed approach explores how to define a metric to qualify the sub-aspects comprised in ISO 25010 regarding reliability as maturity and availability. Secondly, we investigate to what extent the internal structure of the system quantified by the Chidamber and Kemerer (CK) metrics may be used to predict reliability. The approach for prediction is a feed-forward neural network with back-propagation learning. The results indicate that CK metrics are promising in predicting reliability using a neural network method. Keywords: Reliability, prediction, neural network. 2010 Mathematics Subject Classification. 68T05,68M15. |
|||||||