Rezumat articol ediţie STUDIA UNIVERSITATIS BABE┼×-BOLYAI

În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului.

 
       
         
    STUDIA INFORMATICA - Ediţia nr.1 din 2020  
         
  Articol:   GENERALIZED CELLULAR AUTOMATA FOR EDGE DETECTION.

Autori:  ALINA ENESCU.
 
       
         
  Rezumat:  
DOI: 10.24193/subbi.2020.1.06
Published Online: 2020-06-30
Published Print: 2020-06-30
pp. 75-90

FULL PDF

VIEW PDF

Cellular Automata (CA) are simple, easily parallelizable models that have been used extensively for various computational tasks. Such models are especially useful for image processing, as mapping automaton cells to image pixels is straightforward and intuitive. This paper proposes a novel optimization framework for CA rules based on evolutionary algorithms and used in edge detection. This approach addresses the problem of optimizing an individual CA rule for one image and extends it to the optimization of a generic CA rule for a set of similar images. In order to maximize the transferability of the optimized rule, the algorithm is trained on sets of images using a curriculum learning approach. A study of the supervised fitness function, as well as batch optimization experiments, show that the algorithm is robust and competitive with the state-of-the-art methods.

Keywords and phrases. Cellular Automata, Genetic Algorithm, Edge Detection, Curriculum Learning, Optimization.

2010 Mathematics Subject Classification. 65K10, 90C70.
 
         
     
         
         
      Revenire la pagina precedentă