Rezumat articol ediţie STUDIA UNIVERSITATIS BABE┼×-BOLYAI

În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului.

 
       
         
    STUDIA INFORMATICA - Ediţia nr.1 din 2017  
         
  Articol:   MACHINE LEARNING TECHNIQUES FOR DETECTING FALSE SIGNATURES.

Autori:  MIHAI TELETIN.
 
       
         
  Rezumat:  
DOI: 10.24193/subbi.2017.1.04

Published Online: 2017-06-01
Published Print: 2017-06-01
pp. 49-59
VIEW PDF: MACHINE LEARNING TECHNIQUES FOR DETECTING FALSE SIGNATURES

Deciding whether a handwritten signature is legit or it has been falsified is a very complex task. Several methods have been tried out by the graphology experts in order to detect such fraud. However, it is obvious that it is very hard to perform such a classification. In this paper we investigate the possibility to use some supervised learning techniques in order to build models capable to accurately perform such an analysis.The results reported during the testing phase of the obtained model are encouraging for further work.

2010 Mathematics Subject Classification. 68T05, 62M45.1998 CR Categories and Descriptors. I.2.6 [Computing Methodologies]: Artificial Intelligence { Learning; I.2.8 [Computing Methodologies]: Artificial Intelligence { Problem solving.

Key words and phrases. Machine learning, Convolutional neural networks, Support vector machines, Classification, Signature verification.
 
         
     
         
         
      Revenire la pagina precedentă