STUDIA UNIVERSITATIS

BABES-BOLYAI

INFORMATICA

Special Issue 2/2014




STUDIA

UNIVERSITATIS BABES-BOLYAI
INFORMATICA

Special Issue 2/2014

June



EDITORIAL BOARD

EDITOR-IN-CHIEF:
Prof. Militon FRENTIU, Babes-Bolyai University, Cluj-Napoca, Romania

EXECUTIVE EDITOR:
Prof. Horia F. POP, Babes-Bolyai University, Cluj-Napoca, Romania

EDITORIAL BOARD:

Prof. Osei ADJEI, University of Luton, Great Britain

Prof. Florian M. BOIAN, Babes-Bolyai University, Cluj-Napoca, Romania

Assoc. Prof. Sergiu CATARANCIUC, State University of Moldova, Chisinau,
Moldova

Prof. Wei Ngan CHIN, School of Computing, National University of Singapore

Prof. Gabriela CZIBULA, Babes-Bolyai University, Cluj-Napoca, Romania

Prof. Dan DUMITRESCU, Babes-Bolyai University, Cluj-Napoca, Romania

Prof. Farshad FOTOUHI, Wayne State University, Detroit, United States

Prof. Zoltdn HORVATH, E6tvds Lorand University, Budapest, Hungary

Assoc. Prof. Simona MOTOGNA, Babes-Bolyai University, Cluj-Napoca,
Romania

Prof. Roberto PAIANO, University of Lecce, Italy

Prof. Bazil PARV, Babes-Bolyai University, Cluj-Napoca, Romania

Prof. Abdel-Badeeh M. SALEM, Ain Shams University, Cairo, Egypt

Assoc. Prof. Vasile Marian SCUTURICI, INSA de Lyon, France

Prof. Leon TAMBULEA, Babes-Bolyai University, Cluj-Napoca, Romania



YEAR Volume 59 (LI1X) 2014
MONTH JUNE
ISSUE SPECIAL ISSUE 2

STUDIA
UNIVERSITATIS BABES-BOLYAI
INFORMATICA

SPECIAL ISSUE 2:

12™ INTERNATIONAL CONFERENCE ON
FORMAL CONCEPT ANALYSIS - ICFCA 2014

EDITORIAL OFFICE: M. Kogalniceanu 1 « 400084 Cluj-Napoca * Tel: 0264.405300

SUMAR — CONTENTS — SOMMAIRE

C.V. Glodeanu, M. Kaytoue, C. Sacarea, ICFCA 2014: The 12th International
Conference on Formal Concept ANAIYSIS.......cccoivvieiiiirieiieee e 5

D. Borchmann, R. Pefialoza, W. Wang, Classifying Software Bug Reports Using
Methods from Formal Concept ANAIYSIS........ccooivviiiiiiriecce e 10

S. Fennouh, R. Nkambou, R. Valtchev, M. Rouane-Hacene, Stability-Based Filtering
fOr ONtOlOgY RESIFUCTURING ....oveieiiitiieiiite ettt 28

F. Kriegel, Incremental Computation of Concept Diagrams ..........cccceevereirenecsennens 45

L. Piskova, T. Horvath, S. Kraj¢i, Ranking Formal Concepts by Utilizing Matrix
FACTOMIZALION ...t bbbttt benne s 62

C. Sicarea, V. Varga, Triadic Approach to Conceptual Design of XML Data .............. 80






STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LIX, Special Issue 2, 2014
ICFCA 2014: 12th International Conference on Formal Concept Analysis, Cluj-Napoca, June 10-13, 2014

ICFCA 2014: THE 12TH INTERNATIONAL CONFERENCE
ON FORMAL CONCEPT ANALYSIS

CYNTHIA VERA GLODEANU, MEHDI KAYTOUE, AND CHRISTIAN SACAREA

Formal Concept Analysis (FCA) is a multi-disciplinary field built on the
solid foundation of lattice and order theory. Besides this, FCA is strongly
rooted in philosophical aspects of the mathematical formalization of concept
and concept hierarchy. Since its emergence in the 1980s the field has devel-
oped into a constantly growing research area in its own right, with a thriving
theoretical community further applying and developing this powerful frame-
work of qualitative analysis of data. One of the initial goals of FCA was to
promote better communication between lattice theorists and potential users of
lattice theory. The increasing number of applications in diverse areas such as
data visualization, information retrieval, data mining and knowledge discovery
demonstrates how that goal is being met.

In order to offer researchers the opportunity to meet and discuss devel-
opments and applications of FCA annually, the International Conference on
Formal Concept Analysis (ICFCA) was established and held for the first time
in Darmstadt, Germany in 2003. Since then, the ICFCA has been held in
different countries from Europe, America, Africa and in Australia.

The 12" ICFCA took place from the 10t to the 13" of June, 2014 at the
Babeg-Bolyai University, Cluj-Napoca, Romania. There were 39 submissions
by authors from 14 different countries. Each paper was reviewed by 3 members
of the Program Committee (exceptionally four). Sixteen high-quality papers
were chosen for publication in the conference proceedings volume, amounting
to an acceptance rate of 41%. Six other works in progress were considered
valuable for presentation during the conference, five of them being included
in this special issue of the journal Studia Universitatis Babes-Bolyai, Series
Informatica.

We were also delighted that three prestigious researchers accepted to give
an invited talk:

e Learning Spaces, and How to Build them by Prof. Jean-Paul Doignon,
Université Libre de Bruxelles, Belgium;
e On the Succinctness of Closure Operator Representations by Prof. Se-
bastian Rudolph, Technische Universitat Dresden, Germany;
5



6 CYNTHIA VERA GLODEANU, MEHDI KAYTOUE, AND CHRISTIAN SACAREA

e MDL for Pattern Mining: A Brief Introduction to Krimp by Prof.
Arno Siebes, Universiteit Utrecht, The Netherlands.

Our deepest gratitude goes to all the authors of submitted papers. Choos-
ing ICFCA 2014 as a forum to publish their research was key to the success
of the conference. Besides the submitted papers, the high quality of the pub-
lished volumes would not have been possible without the strong commitment
of the authors, the Program Committee and Editorial Board members, and
the external reviewers. Working with the efficient and capable team of local
organizers was a constant pleasure. We are deeply indebted to all of them for
making this conference a successful forum on FCA.

Last, but not least, we are most grateful to the editorial board of Studia
Universitatis Babes-Bolyai, Series Informatica for accepting to publish the
Contributions to ICFCA 201/ as a special issue of this journal, as well to the
organizations that sponsored this event: the Bitdefender company, the iQuest
company, the Babes-Bolyai University, and the City of Cluj-Napoca, Romania.
Finally, we would like to emphasize the great help of EasyChair for making
the technical duties easier.

TECHNISCHE UNIVERSITAT DRESDEN, ZELLESCHER WEG 12-14, 01062 DRESDEN, GER-
MANY
E-mail address: Cynthia-Vera.Glodeanu@tu-dresden.de

INSA DE LyoN, 20 AVENUE ALBERT EINSTEIN, 69621 VILLEURBANNE, FRANCE
E-mail address: mehdi.kaytoue@insa-lyon.fr

BABES-BOLYAT UNIVERSITY, KOGALNICEANU 1, 400084 CLUJ-NAPOCA, ROMANIA
E-mail address: csacarea@cs.ubbcluj.ro



ICFCA 2014

ORGANIZATION
ExEcuTiVE COMMITTEE

Conference Chair
Christian Sacarea, Babes-Bolyai University, Cluj-Napoca, Romania

Conference Organizing Committee

Brigitte Breckner, Babes-Bolyai University, Cluj-Napoca, Romania
Sanda Dragos, Babes-Bolyai University, Cluj-Napoca, Romania
Diana Halita, Babeg-Bolyai University, Cluj-Napoca, Romania
Diana Troanca, Babes-Bolyai University, Cluj-Napoca, Romania
Viorica Varga, Babeg-Bolyai University, Cluj-Napoca, Romania

PROGRAM AND CONFERENCE PROCEEDINGS

Program Chairs
Cynthia Vera Glodeanu, Technische Universitit Dresden, Germany
Mehdi Kaytoue, Université de Lyon, France

Editorial Board

Peggy Cellier, IRISA, INSA Rennes, France

Felix Distel, Technische Universitat Dresden, Germany
Florent Domenach, University of Nicosia, Cyprus

Peter Eklund, University of Wollongong, Australia

Sebastien Ferré, Université de Rennes 1, France

Bernhard Ganter, Technische Universitdt Dresden, Germany
Robert Godin, Université du Québec a Montréal,Canada
Robert Jaschke, Leibniz Universitdt Hannover, Germany
Sergei O. Kuznetsov, Higher School of Economics, Russia
Leonard Kwuid, Bern University of Applied Sciences, Switzerland
Rokia Missaoui, Université du Québec en Outaouais, Canada
Sergei Obiedkov, Higher School of Economics, Russia

Uta Priss, Ostfalia University of Applied Sciences, Germany
Sebastian Rudolph, Technische Universitat Dresden, Germany
Stefan E. Schmidt, Technische Universitdat Dresden, Germany
Gerd Stumme, University of Kassel, Germany

Petko Valtchev, Universite du Québec a Montréal, Canada
Karl Erich Wolff, University of Applied Sciences, Germany

Honorary Member
Rudolf Wille, Technische Universitdt Darmstadt, Germany



8

CYNTHIA VERA GLODEANU, MEHDI KAYTOUE, AND CHRISTIAN SACAREA

Program Committee

Simon Andrews, University of Sheffield, United Kingdom
Mike Bain, University of New South Wales, Australia

Jaume Baixeries, Polytechnical University of Catalonia, Spain
Radim Bélohlavek, Palacky University, Czech Republic

Karell Bertet, L3I Université de La Rochelle, France

Frangois Brucker, Centrale Marseille, France

Claudio Carpineto, Fondazione Ugo Bordoni, Italy

Stephan Doerfel, University of Kassel, Germany

Vincent Duquenne, ECP6-CNRS, Université Paris 6, France
Alain Gély, Universite Paul Verlaine, France

Marianne Huchard, LIRMM, Université Montpellier, France
Dmitry Ignatov, Higher School of Economics, Russia

Tim Kaiser, SAP AG, Germany

Markus Krotzsch, Technische Universitat Dresden, Germany
Michal Krupka, Palacky University, Czech Republic

Marzena Kryszkiewicz, Warsaw University of Technology, Poland
Wilfried Lex, Universitdat Clausthal, Germany

Engelbert Mephu Nguifo, LIMOS, Université de Clermont Ferrand 2 France
Amedeo Napoli, LORIA, Nancy, France

Lhouari Nourine, Université Blaise Pascal, France

Jan Outrata, Palacky University, Czech Republic

Jean-Marc Petit, LIRIS, INSA de Lyon, France

Jonas Poelman, Katholieke Universiteit Leuven, Belgium
Sandor Radeleczki, University of Miskolc, Hungary

Laszlo Szathmary, University of Debrecen, Hungary

Andreja Tepavcevié, University of Novi Sad, Serbia

External Reviewers

Gabriela Arevalo, Universidad Nacional de La Plata, Argentina,
Philippe Fournier-Viger, Université du Québec a Montreal, Canada
Clément Guérin, L3I Université de La Rochelle, France

Mohamed Nader Jelassi, Université de Clermont, France

Jan Konecny, Palacky University, Czech Republic

Michel Krebs, Bern University of Applied Sciences, Switzerland
Branimir Seselja, University of Novi Sad, Serbia

Romuald Thion, Université de Lyon, France



ICFCA 2014

SPONSORING INSTITUTIONS

The Babeg-Bolyai University Cluj-Napoca, Romania
The City of Cluj-Napoca, Romania

The Bitdefender Company, Bucharest, Romania
iQuest GmbH & Co KG, Frankfurt, Germany



STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LIX, Special Issue 2, 2014
ICFCA 2014: 12th International Conference on Formal Concept Analysis, Cluj-Napoca, June 10-13, 2014

CLASSIFYING SOFTWARE BUG REPORTS USING
METHODS FROM FORMAL CONCEPT ANALYSIS

DANIEL BORCHMANN, RAFAEL PENALOZA, AND WENQIAN WANG

ABSTRACT. We provide experience in applying methods from formal con-
cept analysis to the problem of classifying software bug reports character-
ized by distinguished features. More specifically, we investigate the situ-
ation where we are given a set of already processed bug reports together
with the components of the program that contained the corresponding
error. The task is the following: given a new bug report with specific
features, provide a list of components of the program based on the bug
reports already processed that are likely to contain the error. To this end,
we investigate several approaches that employ the idea of implications be-
tween features and program components. We describe these approaches
in detail, and apply them to real-world data for evaluation. The best of
our approaches is capable of identifying in just a fraction of a second the
component causing a bug with an accuracy of over 70 percent.

1. MOTIVATION

Maintaining large software systems is a non-trivial task, and processing
bug reports efficiently is a crucial part of this process. Modern software sys-
tems can easily contain thousands of lines of code, distributed over several
modules and subsystems. When the system reaches such a size, and no single
programmer can oversee its overall complexity, finding components of the pro-
gram which are likely to contain the error causing a given bug report becomes
much more demanding. This is a known challenge in software development.
For example, a recent study showed that in average it takes 19 days for the
Eclipse project and 38 days for the Mozilla project to find a first component
assignment for a bug report [6], without guarantee that this first assignment is
correct. Finding the responsible component is a main bottleneck in the debug-
ging process, and it may even require more time than fixing the error itself. In

Received by the editors: March 26, 2014.

2010 Mathematics Subject Classification. 68N30, 03G10.

1998 CR Categories and Descriptors. K.6.3 Software Management-Software maintenance.

Key words and phrases. FCA, Classification, Software Maintenance, Implications.

D. Borchmann supported by DFG Graduiertenkolleg 1763 (QuantLA). R. Penialoza par-
tially supported by DFG within the Cluster of Excellence ‘cfAED’.

10



CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 11

such cases, speeding up the process of identifying the responsible components
would increase maintainability, and thus the quality, of the software.

The purpose of this work is to share some experimental experience we have
obtained while trying to solve this problem. The approaches we follow in this
work are all based on ideas from formal concept analysis. More precisely, we
employed the idea that the information contained in a bug report (its so-called
“features”) somehow determine in an implicational manner the component of
the program containing the error. Therefore, we devised several methods based
on the notion of implications in formal contexts to find such components, and
tried to evaluate them experimentally on some real-world data obtained from
bug reports in a large software company.

Obviously, one could argue here that the assumption that features of bug
report determine the responsible components precisely is somehow simplified:
it is not unlikely—and it is in fact not very hard to come up with an example
for this—that two identical bug reports are caused by two completely unrelated
errors in the software system. Clearly, this defeats our main assumption of an
implicational dependency between features of bug report and responsible com-
ponents. On the other hand, one could argue that the cause for such situation
is that the bug reports are under-specified, and that the implicational depen-
dencies between features of bug report and responsible components would still
hold if we would include more features, which add information that can sepa-
rate the two reports. This could be achieved by requesting more information
from the user reporting the bug. However, even in the case where we do not
request additional information, we can still use our assumption to find a set
of likely components that caused the bug report, thus reducing the number of
components which need to investigated.

The main practical problem we have to face when following the indicated
approaches is to find the implicational dependencies between features of bug
report and their responsible components. To cope with this difficulty, our
approaches more or less follow a common pattern: all bug reports already
processed so far are brought together in a formal context Keports. This formal
context is then examined for implicational dependencies between features and
components. Then, if a new bug report, given as a set of features, is received,
the implications extracted from the initial context are applied to this set of
features, and the components contained in the resulting closure are considered
candidate causes for the new bug report. Additionally, some of our approaches
introduce a meaningful way of rating the candidate components according to
their likelihood; that is, the higher the rank of a candidate component, the
more likely it is that the new bug was caused in that component.

While this idea is relatively simple to describe and understand, it faces
several practical issues. As already discussed, if the set of features does not



12 DANIEL BORCHMANN, RAFAEL PENALOZA, AND WENQIAN WANG

determine responsible components uniquely, the standard approaches of ex-
tracting valid implications from the context Keports are not applicable. Hence,
we must devise new methods to achieve this goal, relaxing the restrictions that
implications must satisfy. Furthermore, already processed bug reports do not
always need to be correct; for example, it may happen that the actual cause
of some historical report was never fixed, but rather that the circumstances of
the bug were altered in such a way that it was not observed any more. In such
cases, the component stored as cause for this error in the historical records is
itself not correct. Assuming that such cases are possible but unlikely, we have
to adapt our approaches to include methods that can handle those exceptional
errors correctly. Finally, the context Kieports itself can be quite large, and ex-
isting approaches to extract implications from contexts may simply not work
on such large contexts, due to memory and time restrictions. Devising ideas
for scalable extraction algorithms is thus also necessary in this setting.

The problem of suggesting components that are likely responsible for bug
reports is a classification problem in the sense of machine learning [11]. How-
ever, it is not the aim of this work, at this early stage of development, to
compete with existing methods from machine learning. Our purpose is more
to share experiences on how to approach this problem from the perspective of
formal concept analysis, which we consider a natural, although often neglected,
choice for this situation. A comparison with other existing classification ap-
proaches, or a combination with them, would be a logical next step in this
direction of research. We leave that road open for possible future work.

This work is organized as follows. After giving a formal specification of
our problem and some related work in Section 2, we introduce and discuss
in Section 3 the approaches we investigate in this paper. Thereafter, we de-
scribe our experimental setup, show and discuss our results, and evaluate the
individual approaches. This is done in Section 4. We close this paper with
conclusions and outlook for further research in Section 5.

2. PROBLEM SPECIFICATION AND RELATED WORK

We first describe the problem we want to solve in a more precise way. For
the rest of this paper, we assume familiarity with the basic notions of formal
concept analysis. More details from this area can be found in [5].

Let Kreports = (G, M, I) be a finite formal context, called the context of
reports, and let M = F'U C be a partition of M, i.e. FNC =0 and F,C are
non-empty. We call the elements of F' features, and those of C' components.
Intuitively, we understand Keports as the formal context of all previous issues
(old issues, or bug reports) that have been reported for our software system.
For every such issue g € G, the elements of ¢’ N F are the features of the issue



CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 13

of g; i.e., the information observed and reported when the user encountered
the error. Possible such features can be statements like “segmentation fault”
or “screen turned blue”. On the other hand, the elements of ¢’ N C are the
responsible components of the issue g, i.e. the elements of the software that
produces the issue g, and were located when the old issue g was solved. In
other words, fixing these components resulted in the issue to disappear.

Given such a formal context Kyeports and the partition M = FU C, we
want to find for a given new issue (that is, for a set of features o C F') a set of
components which are “likely” to be responsible for it. To achieve this goal,
we want to make use of the historical knowledge from the already solved issues
collected in Kieports. Thus, we want to be able to learn from the old issues as
a means to identifying the components that are responsible for a new issue.

From this formalization of our problem, one may be reminded of a sim-
ilar approach to model learning from positive and negative examples within
FCA [8]. In this approach we assume a formal context L. = (H, N, J), and a
target attribute w ¢ M which objects in H may or may not have. Let Hy C H
be the set of objects which are known to have the attribute w, H_ C H the
set of objects that do not have the attribute w and let H» = H\ (Hy UH_) be
the set of objects for which it is not known whether they have the attribute
w or not. The three sets H;, H_, and H» are mutually disjoint. We call the
elements of Hy positive examples for w, and likewise elements of H_ negatives
examples for w. The elements of H- are called undetermined examples.

The sets Hy, H_, H? give rise to three subcontexts L, L_, L, of L defined
as the restrictions of L to the corresponding sets of objects. The derivation
operators of Ly ,IL_, L, are denoted by (), (-)7, (-)?, respectively.

To decide for objects in H7 whether they may have the target attribute
w or not, we extract hypotheses from L, and L_. A positive hypothesis T
for w is an intent of L, such that T # () and T is not contained in any
object intent of L_, i.e. T ¢ ¢~ for all negative examples g € H_. Negative
hypotheses are defined analogously. To decide for an undetermined example
g € H; whether it has the target attribute w or not, we consider its object
intent ¢° in the context L.. If this set contains positive hypotheses but no
negative ones, then g is classified positively, and correspondingly, if g° contains
negative hypotheses but no positive ones, g is classified negatively. If g° does
not contain any hypotheses at all, then g is unclassified, and if ¢° contains both
positive and negative hypotheses, then the classification of g is contradictory.

This method could also be applied to our problem of classifying software
issues. In this case, we would consider every component we have as a target
attribute, and try to apply the above method to obtain a classification. How-
ever, this idea becomes impractical as the number of components increases: for



14 DANIEL BORCHMANN, RAFAEL PENALOZA, AND WENQIAN WANG

TABLE 1. The context Keyxa used as a running example

object ¢ b ¢ X Y

1 X X X
2 X X X
3 X X
4 X X X X
5 X X
6 X X X

each component we would need to construct the contexts L ,IL_, L, and clas-
sify using the method sketched above, which is actually known to be hard [7].
This theoretical hardness may or may not be an issue in practical applications.

Furthermore, it may happen that bug reports having the exact same fea-
tures, actually describe different errors in the software, and thus may have
different responsible components. In those cases, we would still like to ob-
tain a meaningful set of potentially responsible components (if possible, with
an associated rating). However, the approach for learning from examples [§]
would always result in an undetermined or contradictory classification.

Nevertheless, we can draw some inspiration from this approach for our
own problem, and we do so in the following section, where we describe some
methods for proposing responsible components for new issues.

3. METHOD DESCRIPTIONS

We have tried several approaches for detecting the responsible components
for a given issue. Each of these approaches is motivated by different ideas,
which we describe in detail next. Their common property is that they all
make use of a historical collection of old issues stored in the context Kieports
of reports to predict the component of a new issue. After having described
these methods, in the next section we provide the results of an experimental
evaluation on real-world issues from a software company.

For the following descriptions we assume that the attribute set M of
Kreports is partitioned into features and components as described before, i.e.
M = F U C. Furthermore, we assume that we are given a new issue o C F
which we want to classify. For this, each of the following methods proposes a
set candidates(o) C C of the components that are likely to be responsible for
the issue o. Furthermore, all but the first method additionally yield a score
score(x) € [0, 1] for each component x € candidates(o). The higher this score,
the more likely the method considers = to be responsible for o.

To help understanding the ideas behind all these methods, we will apply
them over the simple context Key; shown in Table 1. In this context, the



CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 15

features are a, b, and ¢, while the components are X and Y. As the new issue
to be classified we consider the set of features oexa = {b, c}.

The new-incident method. A very simple idea for classifying a new issue
would be to search in the historical records Kyeports for a previous occurrence
of the same issue. The component that was responsible for the old issue can
then be suggested as being responsible also for the new issue. This idea has
two obvious problems. On one hand, the historical record is not necessarily
complete, and hence there might exist no matching report; in this case, no
responsible component would be suggested. On the other hand, since historical
records may contain errors, components might change over time, and the set of
features might not fully describe all possible problems, there might exist more
than one matching issue in Kieports, which may lead to several components
being proposed. To alleviate these issues, we slightly generalize this simple
classification idea, yielding an approach which we call new-incident, which
works as follows. Recall that the new issue is described by its set of features
o C F. For every object g in the context Kreports, if ¢’ N F C o, then ¢’ N C is
suggested as a responsible component, i. e.

candidates(o) = {z € ¢/ NC | ¢ N F C o}.

Note that there is no scoring among the candidates of o, i.e. all proposed
components are equally preferred.

In our example context Keya, for the new issue oexa we get that only the
objects 3 and 5 are such that ¢’ N F C 0exa: 3' N F = {c}, and 5 N F = {b}.
The proposed components are then X and Y, and these are preferred equally.

This approach is in fact very similar to the one using hypotheses for clas-
sification, as we have described in Section 2. Namely, what we do here is to
consider for all components x € C' in Kieports the sets of features belonging
to issues in Kieports With responsible component x. These sets actually corre-
spond to hypotheses in the sense of Section 2. The only difference may be that
for one such set of features 7' it may happen that T is actually contained in
some set of features which belongs to a previous issue which had a responsible
component different from x. Then, in the approach of Section 2 we would
discard T as a hypothesis. However, as we have already argued previously,
that is not a wanted behavior in our setting, as otherwise we would end up
with a large number of contradictory classifications. Instead, we keep T as a
hypothesis, and allow for a classification to more than one component. In this
way, new-incident is similar to the classification of Section 2.

A drawback of the new-incident method is that the whole context needs
to be processed whenever a new issue arises. As the historical records can
be very large, this might be a very time-consuming task. Thus, we analyze



16 DANIEL BORCHMANN, RAFAEL PENALOZA, AND WENQIAN WANG

methods based on the pre-computation of bases of implications to assist in a
more efficient classification of issues.

The can+lux method. Recall that the reports context may contain contra-
dictory information or may be incomplete. It thus makes sense to try to use a
base capable of producing implications that are violated by a small number of
exceptions, like Luxenburger’s base [9, 10, 14]. The definition of this base re-
lies on the notions of support and confidence of an implication [1]. Intuitively,
the support describes the proportion of objects that satisfy the implication,
while the confidence measures the number of objects that do not violate it.

Definition 1 (support, confidence). Let K = (G, M, I) be a formal context
and A C M. The support of A is

A’
supp(A) := .
|G|
The support and confidence of an implication A — B are defined as
supp(A U B)
supp(A — B) :=supp(AU B), conf(A—- B) = ——=
(A~ B) = supp(AU B) (4 B) = 2

Luxenburger’s base includes only implications between intents having sup-
port and confidence larger than the given parameters minsupp and minconf,
respectively, which are input values from the interval [0,1] provided by the
user. Moreover, the implications belonging to this base can only relate direct
neighbors from the lattice of intents of the given formal context.

Definition 2 (Luxenburger’s base). For a finite formal context K, the Luz-
enburger base of K w.r.t. minsupp, minconf € [0, 1] is the set of all implications
A — B such that A and B are intents of K, A is a direct lower neighbor of B in
the lattice of intents of K ordered by C, and both (i) conf(A — B) > minconf
and (ii) supp(A — B) > minsupp hold.

Notice that Luxenburger’s base does not include implications that are valid
in the formal context K, because for two intents A, B of K to yield a valid
implication A — B of K, one must have A = B, and then A cannot be a direct
lower neighbor of B anymore. To ensure that we do not miss implicational
dependencies which are actually true in Kieports we therefore have to take the
valid implications separately, and we do so by extending Luxenburger’s base
with the canonical base of Kreports-

Given a new issue defined by a set of features o, the can+lux method com-
putes the closure of o over the canonical and Luxenburger’s bases of Kreports,
and suggests all components appearing in this closure as candidates. Each can-
didate component = € C' is associated with a score, defined as the maximum



CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 17

of the confidences of all rules A — {z } such that A C o, i.e.
score(x) := max{conf(A — {z}) | A C o}.

Note that this involves an exhaustive search among all subsets of o, and can

hence become very expensive. However, for the experimental setup that we

discuss in the next section this is not an issue, as the size of o is usually small.
Let us consider our example context Key, again. Its canonical base is

HY} = {b},{b, X} = {a}, {c} = {X},{a,b,Y, X} = {c} ],
and the Luxenburger’s base of Keyxa with minsupp = 0.01 and minconf = 0.01
consists of the implications

0 —{X}, 0 — {o}, {or = {V}, {X} = A{c},

0 — {a}, {X}t = {a}, {a} — {X}, {o} = {a},

{a} = {0}, A{a, X} —={b}, A{a b} ={X},  {bY}—>{a},

{a,b} = {V}, {c, X} = {a}, {a, X} = {c}, {a,b, X} = {c},
{a,c, X} — {b}.

The closure of our observation oexs = {b, ¢} over these two bases includes both
components X, Y, and hence both are proposed as responsible. Since the rule
{c¢} — {X} is in the canonical base, X is proposed with score 1, while Y is
proposed with score 2, which is the confidence of the rule {b} — {Y'}.

The can+lux method provides a higher degree of liberty, as it is parameter-
ized on the minimal support and minimal confidence that are used to compute
Luxenburger’s base. Moreover, the time required for computing the closure
of the two bases and the scores of each proposed component is neglectable.
Unfortunately, the same is not true for the computation of the bases. Indeed,
as we will see in the following section, this computation was very costly in
terms of time in our software issue scenario. Moreover, the performance of
this classification was, surprisingly, rather disappointing.

Since the approach of considering Luxenburger’s base turned out to be in-

appropriate, we studied different approaches for producing implications that
are tolerant to a few exceptions. The main idea of the following three methods
is to partition the context into smaller pieces, and compute only valid implica-
tions in these subcontexts. The intuition is that a small number of exceptions
will violate such implications in only a few of all the subcontexts.
The subcontext method. For this method, we first create one subcontext
K, for every component x € C' appearing in Kieports- The context K, is defined
as the restriction of Kyeports to the set of objects 2/ and thereafter removing
all components and attributes which have an empty extent. In other words,

K,=(G:=2,F:={mecF|m'na #0},ING x F).



18 DANIEL BORCHMANN, RAFAEL PENALOZA, AND WENQIAN WANG

TABLE 2. The subcontexts Kx (left) and Ky (right) from subcontext

object a b ¢

object a b ¢

1 X X

3 X 2 X X
4 X X X 5 X
6 X X

Intuitively, the intents from the context K, are sets of attributes that are
always together whenever component x is responsible, and can hence be used
as a premise for suggesting this component. To handle exceptions, we consider
only implications whose premise have a support larger than a threshold, which
is provided as a parameter. Formally, K is a frequent intent of a context K
w.r.t. minsupp if it is an intent of K and supp(K) > minsupp. For every
component x, and every frequent intent K of Ko, we include the implication
K — {z}. Notice that every intent L that is a subset of a frequent intent K is
also a frequent intent. Thus, it suffices to consider only the minimal frequent
intents as premises for the implications. The proposed components are then

candidates(o) = {z | K frequent non-empty intent of K,, K C o}.

Note that this is the same as considering all components in the closure of o
under all implications K — {z} with K a frequent, non-empty intent of K,.

Consider again our example context Kexa. The two subcontexts Kx and
Ky are shown in Table 2. If we set the minimal support to minsupp = 0.1, then
the minimal frequent intents of Kx are {a} and {c}, and the only minimal
frequent intent of Ky is {b}. Thus, we obtain the rules {a} — X, {b} — Y,
and {c} — X. Given the new issue oexa = {b, ¢}, both components X and Y
are suggested as potentially responsible for the issue.

To provide a more fine-grained suggestion of the responsible components,
we score these implications according to their relevance among the context of
reports. More precisely, for each component we set

score(x) := max{conf(K — {z}) | K frequent non-empty intent of K,}.
In our example, the scores are:

score(X) = max{conf({a} — X),conf({c} — X)} =1,
2

score(Y') = max{conf({b} — Y)} = 3

As a result, component X is suggested with a higher priority (1) than Y (%)

The partition and partition-pp methods. A different method for parti-

tioning the context of all historical reports is to divide it in several subcontexts

of equal size, regardless of the component they are associated with. Under the



CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 19

TABLE 3. A partition Ki, Ky of Keya

object a b ¢ X object a b ¢ X Y
1 X X X 2 X X X
3 X X 4 X X X X
6 X X X 5 X X

assumption that exceptions occur rarely, we expect these exceptions to violate
the implications in only a few of the generated subcontexts. As the first step
in the partition and partition-pp methods, we randomly partition Kreports
into contexts of a specified size n. These subcontexts are then simplified by
removing all attributes that appear in no object. For instance, the context
Kexa can be partitioned into two contexts of size 3 as shown in Table 3.

In the first context we have removed the attribute Y, since it appears in no
object of this context. Given a new issue o, the partition method computes,
for every context K in the partition, the closure of of o over K. The proposed
components are those that appear in any of these closures; that is, we propose

(1)  candidates(o) = C'N U{o’ﬂé | K subcontext in the partition, o # 00}

as candidates for the observation, where (-)i and ()i denote the derivation
and double derivation operator in the corresponding context K.

The score of each proposed component z € C' is given by the proportion
of subcontexts K in the partition such that z € of, i.e.

_ {K | K subcontext in the partition, z € of }|
k

score(x) :

where k = [%1 is the number of contexts in the partition.

The closure of the observation oexa = {b, ¢} over the subcontexts K; and Ko
is {a,b,c, X'}. Thus, component X is proposed with score 1 (since it appears
in the closure for all the subcontexts), and component Y is not proposed.

While the partition method behaves well in our scenario of software
issues, as shown in the following section, one might still increase its accuracy
by allowing more components to be suggested. The partition-pp method
achieves this by considering the proper premises for the components in each
subcontext, rather than a direct closure.

Definition 3 (proper premise). Given a set of attributes B C M, let
B*:=B"\(BuU | ).
SCB

B is a proper premise if B® # (). 1t is a proper premise of m € M if m € B®.



20 DANIEL BORCHMANN, RAFAEL PENALOZA, AND WENQIAN WANG

The idea of considering proper premises arises from the existence of the
partition M = F U C of the attribute set. More precisely, we are interested in
implicational dependencies “from F' to C,” i.e. implications A — B satisfying
A C F and B C C. Then sets £ of implications of this type are iteration-free,
i.e. the computation of closures £(F) of sets FF C F can be achieved by

L(F)=FU| {B|(A—B)eL ACF}.

In other words, the computation given by the right-hand side of this equation
does not need to be iterated to compute L(F) [5].

We now want to compute bases of this type of implications for each sub-
context in partition and to use them instead of (-)”. Of course, one would
like to have such a set to be as small as possible, and indeed proper premises

provide a way to obtain such a base. In other words, the set
{B— B*NC | BC Fis a proper premise for some element in C'}

is a minimal iteration-free base for all implications from F' to C' [2, 5]. This
motivates the use of proper premises. Note that proper premises allow for
interesting optimizations with respect to their computation [13].

We apply this idea as follows: for each subcontext in the partition of
Kreports, the partition-pp method computes the proper premises of the com-
ponents appearing in it. We only include those proper premises which have
positive support withing this subcontext. For each such proper premise B
for a component z, we collect the implication B — {x} into a set £. Re-
sponsible components are then proposed by finding all collected implications
(B — {x}) € L such that B C o, and suggesting their associated compo-
nents x. The score of suggesting x is given by the maximal confidence of an
implication (B — {z}) € £ such that B C o, i.e.

score(z) = max{conf(B — {z}) | (B — {z}) € £,B C o}

where the confidence is computed in Keports-

The proper premises for X in the context K; are {a}, {b}, and {c}. In Ko
there are no proper premises for Y and the only proper premise for X is {c}.
The confidence of the implications {a} — {X}, {b} — {X}, and {c} — {X}
over Key, is %, %, and 1, respectively. Thus, given our observation Oexa, only
the component X is suggested with score 1, due to the implication {c} — {X}.

We can expect partition-pp to return more candidates than partition,
which is also confirmed by our experiments. This is due to the following
reason: in (1), a candidate set of is excluded when o = 0, i.e. if no object
in the subcontext has all the features in o. That is, we always consider the
whole set o in every such subcontext. However, there might still exist a subset
p C o which meaningfully entails responsible components, in the sense that



CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 21

px # 0 and px # p. Those sets p are ignored in partition, but not in
partition-pp: If x € p’]é, then there exists a proper premise as subset p for x
with positive support, and thus partition-pp proposes x as a candidate.

4. RESULTS AND DISCUSSIONS

We implemented all methods described above on conexp-clj, a general-
purpose library for formal concept analysis,! and applied them to data describ-
ing software issues, collected by a large German software company, considered
as a multivalued context. The original data had six features that received
several different manifestations. We scaled this context nominally, resulting
in a formal context of size 2951 x 2973 with incidence density of roughly 0.002.
We then conducted the following experiments to measure the quality of these
methods with respect to classifying bug reports: for varying n € N, we ran-
domly chose a subcontext with n objects, removing all attributes which have
empty extent in the corresponding subcontext. Then [0.9 - n] of these items
were used to train the methods; i.e. formed the context of reports Kieports,
and the remaining [0.1 - n] data items were used to test them. A test con-
sisted in classifying the set of features of the data items, and comparing the
proposed components with the known responsible component. For each fixed
n, the whole procedure was repeated five times; 5 different, randomly cho-
sen subcontexts were considered. We recorded the averages of all the values
measured during each of these five executions.

To evaluate the testing data, and obtain a better evaluation of our pro-
posed methods, we also implemented a random classifier. This method simply
proposes a randomly chosen proportion of all the available components. The
number of proposed components is determined by an input parameter. This
allows us to determine whether the components are uniformly represented in
the data, and avoid giving special importance to over-represented components.

We tested the methods in two steps, when applicable: first, every method
proposes a set of components as being responsible for the issue. This test
is positive if and only if the original responsible component is among those
proposed. We also measured the mean percentage of proposed components
among all components in the data, to discern methods that yield positive
answers simply because they propose a large amount of components, from
those that yield more informative answers. Most of our methods also graded
the proposed components. For those methods a test is correct if and only if
the original responsible component is among the top-rated ones. Again, we
also measure the mean percentage of the top-rated components.

1http ://github.com/exot/conexp-clj



22 DANIEL BORCHMANN, RAFAEL PENALOZA, AND WENQIAN WANG

TABLE 4. Experimental Results

Method n train (ms) test (ms) positive proposed correct proposed
random(0.2) 1000 7.25 26.32  20.81% 20.00%

random(0.2) 2000 15.12 24.87  19.09% 19.72% - -
random(0.5) 1000 4.85 16.64 51.38% 50.00% - -
random(0.5) 2000 22.63 30.65 51.16% 49.82%

random(0.9) 1000 12.58 26.21  90.50% 89.61% - -
random(0.9) 2000 13.37 33.40 87.00% 89.68% - -
new-incident 1000 0.02 19856.95 36.00% 3.11% - -
new-incident 2000 0.02 59371.25 44.50% 3.00% - -

750 3181598.62 11.98  69.33%  28.15% 30.67% 0.55%
1000 2841258.02 14.10  73.00%  29.94% 51.00% 0.54%

750 3355400.12 12.65 73.33%  25.48% 37.33% 0.50%
subcontext(0.01) 1000 2923139.74 15.09 72.00%  27.93% 41.00% 0.50%

)
)
)
)
can+lux(0.01,0.7) 1000 1375682.73 ~ 113.01  9.00%  0.05% 9.00%  0.05%
can+lux(0.01,0.7) 2000 3260189.07  219.74 8.50%  0.03% 8.50%  0.03%

)

)

)

)

)

)

subcontext(0.05
subcontext(0.05

subcontext(0.01

can+1ux(0.01,0.9) 1000 1359721.46 148.44  14.00% 0.07% 14.00% 0.07%

can+1lux(0.01,0.9) 2000 3378045.62 199.46  7.50% 0.03%  7.50% 0.03%

(
(

(
can+1ux(0.05,0.7
(

(C
(0.

1000  310803.29 0.24 0.00%  0.00% 0.00%  0.00%
can+1ux(0.05,0.7) 2000 724341.14 0.13  0.00%  0.00% 0.00%  0.00%
can+1ux(0.05,0.9) 1000 340270.58  119.62 5.00%  0.03% 5.00%  0.03%
can+1ux(0.05,0.9) 2000 787725.99 0.09 0.00%  0.00% 0.00%  0.00%
partition(3) 1000 18961.75  193.25 33.94%  0.84% 30.00%  0.23%
partition(3) 2000  73898.59  519.63 49.13%  0.69% 47.00%  0.19%
partition(10) 1000 6161.62  109.95 34.00%  0.21% 34.00%  0.21%
partition(10) 2000  23895.38  268.83 46.00%  0.34% 45.00%  0.19%
partition(15) 1000 494322  109.95 36.00%  0.23% 34.06%  0.17%
partition(15) 2000  16468.57  245.98 41.69%  0.27% 40.56%  0.16%
partition(30) 1000 2488.06 9470 40.00%  0.23% 40.00%  0.20%
partition(30) 2000  8529.07  218.02 44.50%  0.25% 43.50%  0.18%

1000 89773.62 83.68 78.19%  31.12% 64.00% 0.50%
2000  418524.89 217.82 88.38%  37.96% 71.00% 0.39%

1000 142692.24 63.23  77.38% 7.32% 68.00% 0.52%
2000  498504.77 151.32  82.19%  10.79% 72.22% 0.43%

)

)

) 1000 18219281  57.21 78.63%  7.30% 69.69%  0.49%
) 2000 491516.69 12077 81.66%  9.29% 70.84%  0.39%
)
)
)
)

partition-pp
partition-pp

partition-pp
partition-pp

partition-pp

1000 267326.75 53.75  76.88% 7.08% 61.31% 0.51%
2000  630232.06 109.49  80.91% 7.56% 70.91% 0.38%

1000 1083661.64 38.19  66.63% 3.62% 59.00% 0.44%
2000 2201360.65 85.13  80.94% 4.16% T71.56% 0.36%

partition-pp
partition-pp

partition-pp

(3
(3
(1
(1
partition-pp(1
(1
(1
(1
(3
partition-pp(3

The results are shown in Table 4. This table includes the training and
testing times, which should be considered with care: the experiments were
conducted in parallel on a 24 core machine, and the times measured are the
overall execution times, not the ones per thread. Thus, the actual computation
times could be lower than the ones stated in the table. However, these numbers
still give a feeling on how these methods perform. Also note that we applied
a timeout of 5 hours for each experiment, including repetitions.



CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 23

From the experimental results we first see that the random classifiers be-
have as expected: if we choose randomly 20% of all components we have, then
roughly 20% of the tests are positive; that is, the responsible component is
among those proposed. The same is true for 50% and 90%. Thus, our data
behaves mostly like random data with respect to our classification task. With
respect to this random selection, even our simple approach new-incident
performs much better: for n = 1000, only around 3% of the components are
proposed while 36% of all tests were positive. This performance increases
for n = 2000. However, while the training time is negligible (there is no
training phase), the testing time is quite high, and increases with the size of
the data. This may render this approach difficult to apply in realistic sce-
narios, where the classification time is the real bottleneck. Fortunately, only
the new-incident method has such long testing times. In all the follow-
ing approaches, the testing time is negligible. However, the price to pay are
rather huge training times; sometimes even larger than the timeout used. On
the other hand, in comparison to testing, training is conducted rarely, which
means that huge training times can still be acceptable in practical applications.

The first method in this category is subcontext, which we applied with
parameters 0.05 and 0.01 to our data. We see that the rate of positive tests
is quite high, but also the percentage of components proposed. On the other
hand, the scoring function provides a good method for further reducing the set
of proposed components: only one out of each 200 components is rated with
the highest score, and the correct answer is still provided in roughly half of
the cases. However, the training times for this method were the largest among
all the approaches we tested, by a broad margin. As an overall comparison
with other methods, we conclude that the subcontext method is not the best
suited for achieving a convincing classification.

The approach can+lux, which combines the canonical and Luxenburger’s
bases, performs even worse, much to our surprise: although the proportion
between the number of proposed components and positive and correct tests is
comparatively good, the latter is too low to be of any use for classification.
Moreover, the rating provided by this method yields no improvement over the
unrated classification. As the percentage of proposed components is almost the
same, we can conclude that most components receive the same (highest) score.
This behavior is not necessarily an intrinsic problem of the method, but could
be attributed to a faulty choice of the scoring function. Notice, however, that
the method proposes in average less than one responsible component. Thus,
the same behavior would be observed, regardless of the scoring function.

This picture changes drastically when we come to the approaches based
on partitioning the training data into smaller subcontexts. For partition
we not only achieved rather high positive rates, but the number of proposed



24 DANIEL BORCHMANN, RAFAEL PENALOZA, AND WENQIAN WANG

40% { [O new-incident 0.6% - [[O subcontext
O subcontext * O can+lux o [)
o can+lux 0.5% [ partition DO® %
30% { [[© partition {:} k% partition-pp {}
] ;} partition-pp % T 0.4% ‘
£ 20% | £0.3% 1

- 4 0.2% 08 %
| g5 = 25\7“ % {:} T | I:ﬂ i

75% 25% 50% 75%

Positiv

FIGURE 1. Positive (left) and correct (right) vs. proposed components

components was radically reduced. Interestingly, the rating provided by this
method also behaves well; it keeps high rates of correct tests but reduces the
number of proposed components. This is especially true if the partitioned
contexts are very small (e.g. have 3 objects), but is also observable for larger
contexts. Finally, the training times are practically irrelevant, and should
scale well for even larger data sets. Notice that the training time depends
linearly on the number of objects in the training data; if we additionally want
to restrict to only the highest-ranking components, then the training time
becomes O(nlogn) since an additional sorting step is needed.

While partition behaves relatively well, the proportion of positive tests
remains below 50%. It would clearly be nicer to increase this number, even
if the rate of proposed components increases. This is achieved by introducing
implicational dependencies as in partition-pp, where both the positive and
correct rates are increased. The cost of this improvement is to propose more
components in both cases, but the ratios between proposed and positive or
correct rates are still very good. What is very surprising, though, is that
the rating provided by this approach is very effective, reducing the number
of proposed components by factors of 10 or more while keeping high rates of
correct tests. This is especially true for n = 2000; one can conjecture that this
improves for larger training sets. Moreover, we can also see that the larger
the subcontexts we consider in our partition, the smaller the sets of proposed
components are. However, we have to pay for this with an increase in the
training time, which may or may not be relevant in practice. In particular,
this method proposes in average less than six top-rated components, and it
might not be worth spending resources trying to reduce this number further.

The results of Table 4 are further depicted in Figure 1. The horizontal
axis corresponds to the percentage of positively or correctly classified tests,
respectively, while the vertical axis shows the percentage of suggested com-
ponents. The ideal situation is an element in the lower-right corner: a high
percentage of success, while suggesting only a few candidates. In the plots,
different methods are depicted by different node shapes, while the shade of



CLASSIFYING SOFTWARE BUG REPORTS USING FORMAL CONCEPT ANALYSIS 25

gray expresses the size of the training set: a darker shade means a larger set.
As it can be seen, the nodes sharing the same figure and the same shade of
gray form natural clusters in these plots. This suggests that the quality of
the results depends mainly on the method chosen, and the size of training set,
while the parameters used in the specific method are not that relevant. The
best results were obtained by partition-pp with a training set of size 2000.
This corresponds to the cluster of nodes depicted by # in the plots. It can be
easily seen that this method indeed showcases the best behavior. The only
exception is the case where partitions have size three, which is the single node
in the upper-right corner of the left plot: it was the most successful w.r.t.
positive classification, but suggested over a third of all available components.

These experimental results suggest that our initial idea of using implica-
tional dependencies between attributes to classify bug reports is reasonable,
but only if considered “locally” as in partition and partition-pp. If those
dependencies are considered in the overall training data, then the resulting
classification fails miserably (see can+lux). The partitions used in partition
and partition-pp should not contain too large, nor too small, contexts.

For putting these methods into practice, we can also think of a combined
approach of partition and partition-pp: the former one has an acceptable
performance and suggests only very few components. Therefore, considering
those components may be a good starting point. If the responsible component
is not among those proposed by partition, one can consider those proposed
by partition-pp, which may be more (especially if not rated), but which are
also more likely to contain the real cause of the issue. Also different sizes of the
partition are imaginable, increasing the performance of the classification but
also the number of proposed components. If all fails, one has to fall back to
manual classification. However, this last resource is needed only sporadically.

5. CONCLUSIONS

Our goal was to analyze whether FCA tools can be useful for classifying
software issues according to their responsible component. Contrary to stan-
dard machine learning techniques, FCA methods provide logical implications
between the symptoms (features of the bug) and the causes (the responsi-
ble component). These implications can be understood by users, and provide
more detailed information of the software system itself. The use of association
rules to detect faults and vulnerabilities in software systems has been studied
previously [3, 4, 12]. The main difference with this paper is that we study and
compare different approaches for handling erroneous and incomplete informa-
tion, and detected empirically which is best suited for our scenario.



26 DANIEL BORCHMANN, RAFAEL PENALOZA, AND WENQIAN WANG

We tried several approaches, all based in ideas developed in FCA. Each
of the methods was inspired by different approaches towards the problem.
One of the important issues was how to deal with potential errors, incomplete
knowledge, and change of the software structure over time. Surprisingly to
us, the obvious idea of using Luxenburger’s base to handle uncommon excep-
tions yielded relatively bad results: the responsible component was usually
not proposed, regardless of the chosen minimal support and confidence.

The method that behaved best in our scenario was to compute a base
of proper premises over a partition of the historical records, together with a
scoring function for the proposed components. This method behaves very well
from partitions of size 3 up to 30, yielding the right answer in over two-thirds
of the cases, while proposing less than 0.5% of the available components. This
method also scales well: whenever new historical records are added, only the
proper premises over a partition of the new cases need to be computed. All
previous records remain unchanged. Moreover, it is easy to get rid of old
historical records, by simply deleting their corresponding partitions.

In general, our experiments show that it is feasible to classify objects from
large historical records using FCA, provided that training can be done off-line.
While training in the partition-pp method could take more than 10 minutes,
in a context of 1000 objects, the classification time was almost instantaneous,
taking less than 100ms. For our software issue scenario, these conditions are
satisfactory: new issues would be entered to the training data sporadically,
and training may take place over-night. However, lower classification times,
with higher success rates and small sets of candidate components, translate
into faster repair of software bugs.

We have not compared our approach with existing classification methods
from machine learning and other areas. Since we obtained promising results,
we will make such comparison in the future. Our implementation is prototyp-
ical, and requires further optimization for industrial-strength use. Studying
some applicable optimization techniques will also be a focus of future work.

REFERENCES

[1] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. “Mining Asso-
ciation Rules between Sets of Items in Large Databases”. In: Proc. ACM
SIGMOD Int. Conf. on Management of Data. 1993, pp. 207-216.

[2] Karell Bertet and Bernard Monjardet. “The multiple facets of the canon-
ical direct unit implicational basis”. In: Theoretical Computer Science

411.22-24 (2010), pp. 2155-2166.



REFERENCES 27

Peggy Cellier. “Formal concept analysis applied to fault localization”.
In: Companion Volume of the 30th International Conference on Software
Engineering. (Leipzig, Germany). ACM, 2008, pp. 991-994.

Peggy Cellier et al. “Formal Concept Analysis Enhances Fault Localiza-
tion in Software”. In: Proc. ICFCA 2008. (Montreal, Canada). Vol. 4933.
LNCS. Springer, 2008, pp. 273-288.

Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathe-
matical Foundations. Berlin-Heidelberg: Springer, 1999.

Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. “Improving bug
triage with bug tossing graphs”. In: Proc. ACM SIGSOFT Int. Symp.
on Found. of Software Eng. ACM, 2009, pp. 111-120.

Sergei O. Kuznetsov. “Complexity of learning in concept lattices from
positive and negative examples”. In: Discrete Applied Mathematics 142.1-
3 (2004), pp. 111-125.

Sergei O. Kuznetsov. “Machine Learning and Formal Concept Analysis”.
In: Proc. ICFCA 2004. Vol. 2961. LNCS. Springer, 2004, pp. 287-312.
Michael Luxenburger. “Implications partielles dans un contexte”. In: Ma-
thématiques, Inform. et Sciences Humaines 29.113 (1991), pp. 35-55.
Michael Luxenburger. “Implikationen, Abhngigkeiten und Galois-Abbil-
dungen”. German. PhD thesis. TH Darmstadt, 1993.

Thomas M. Mitchell. Machine Learning. 1st ed. New York, NY, USA:
McGraw-Hill, Inc., 1997.

Stephan Neuhaus and Thomas Zimmermann. “The Beauty and the Beast:
Vulnerabilities in Red Hats Packages”. In: Proc. 2009 USENIX Annual
Technical Conference. 2009.

Uwe Ryssel, Felix Distel, and Daniel Borchmann. “Fast algorithms for
implication bases and attribute exploration using proper premises”. In:
Annals of Math. and Artif. Intel. Special Issue 65 (2013), pp. 1-29.
Gerd Stumme et al. “Intelligent Structuring and Reducing of Associa-
tion Rules with Formal Concept Analysis”. In: Proc. KI 2001. (Vienna,
Austria). Vol. 2174. LNCS. Springer, 2001, pp. 335-350.

THEORETICAL COMPUTER SCIENCE, TU DRESDEN, GERMANY
E-mail address: daniel.borchmann@mailbox.tu-dresden.de

TCS, TU DRESDEN, GERMANY. CENTER FOR ADVANCING ELECTRONICS DRESDEN
E-mail address: penaloza@tcs.inf.tu-dresden.de

SAP, GERMANY
E-mail address: wengian.wang@sap.com



STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LIX, Special Issue 2, 2014
ICFCA 2014: 12th International Conference on Formal Concept Analysis, Cluj-Napoca, June 10-13, 2014

STABILITY-BASED FILTERING FOR ONTOLOGY
RESTRUCTURING

SCHAHRAZED FENNOUH, ROGER NKAMBOU, PETKO VALTCHEV,
AND MOHAMED ROUANE-HACENE

ABSTRACT. Assessing the relevance of concepts extracted from data is an
important step in the knowledge discovery process. We address this issue
in a specific outfit, i.e., the discovery of new ontological abstractions by
relational concept analysis (RCA). In the context of RCA-based ontology
restructuring, potentially relevant abstractions must be recognized among
the formal concepts of the output lattice before integrating them into the
restructured ontology. Thus, a key technical challenge is the design of
effective relevance-based filtering methods. In our study, we examined a
variety of relevance measures. Here, we focus on concept stability and
discuss its usefulness in the light of the outcome from an experimental
study involving several ontologies retrieved from the Web.

1. INTRODUCTION

An ontological model is like a database conceptual schema [8]: it provides
the framework in which to fit the fine-grain knowledge about a particular
domain or subject. Like most artifacts in information system development
(conceptual models, design models, source code, etc.), an ontological model is
prone to errors and design anomalies. Previous attempts at detecting and, pos-
sibly, correcting such anomalies yielded a variety of restructuring approaches.
Intuitively, a restructuring process aims at improving the quality of an ontol-
ogy, which further increases usability and eases maintenance [3]. Technically
speaking, ontology restructuring reshuffles its current structure into a new
one, better organized and more complete. It thus refers to: (1) correction and
reorganization of knowledge contained in the initial conceptual model, and
(2) the discovery of missing knowledge pieces and their integration into the
improved structure [19].

Received by the editors: March 27, 2014.
2010 Mathematics Subject Classification. 03G10, 68T30.
1998 CR Categories and Descriptors. 1.2.4 [Knowledge Representation Formalisms and
Methods|: Representations.
Key words and phrases. Filtering, Relevance evaluation, Concept stability, Ontology
restructuring.
28



STABILITY-BASED FILTERING FOR ONTOLOGY RESTRUCTURING 29

The problem has been addressed in the literature from a variety of stand-
points [3, 9, 20]. However, there is no such thing as a well-established method-
ology covering the variety of restructuring steps and techniques. Even worse,
none of the proposed solutions offers a holistic approach to the ontological
structure. Instead, local changes are focused on, without insight on their im-
pact on distant parts of the structure. In addition, existing methods are limited
to problem detection and improvement, leaving the other crucial restructuring
aspect, i.e., the discovery of missing knowledge chunks, uncovered.

Following the success of FCA-based restructuring methods in software
re-engineering [6], we propose a similar approach for ontologies. Indeed,
FCA provides the formal framework necessary to support a truly holistic ap-
proach towards restructuring while simultaneously propping up new abstrac-
tions through factoring out shared descriptions. Moreover, due to the complex
relational information comprised in a typical ontological model, we propose to
use the Relational Concept Analysis (RCA) extension. Yet the mathematical
strength of FCA and the expressiveness of RCA come with a price: A key
challenge to face here is the complexity of the resulting relational lattices. A
standard way out in such cases is the design of effective filtering methods that
help spot and then remove the spurious concepts that abound in the output
lattice. Thus, our overall goal is the design of appropriate decision criteria for
relational concepts or, alternatively, means to assess their relevance.

Selecting relevant concepts within a lattice is knowingly a delicate task
for which few generic hints are available. Indeed, relevance is a contextual
and subjective property. Therefore, fully automated filtering methods rely on
structural properties that are easier to measure. In our restructuring context,
however, the input ontology, albeit of a flawed structure, constitutes a rich
source of domain knowledge to explore in the design of “semantic” relevance
measures. Yet at this stage, we chose to keep to a purely structural approach
and ignore the ontology. Thus, we adapted concept stability as defined in [10]
to our RCA framework. The present paper is a report on an experimental
evaluation of the resulting measure’s usefulness.

The remainder of the paper is organized as follows; we start, in section 2,
by presenting our RCA-based approach for ontology restructuring; we recall
the basic notions of FCA/RCA framework and present the problem of lattice
filtering. Section 3 is devoted to the definition of the notion of stability and
its projection in an ontological context; and then the proposal of a simple
filtering heuristic based on stability. We explain, in section 4, our experimental
framework followed by our experimental study including the discussion of our
results. Section 5 provides an overview of related work. Finally, section 6
provides concluding remarks with an outlook of future work.



30 S. FENNOUH, R. NKAMBOU, P. VALTCHEV, AND M. ROUANE-HACENE

TABLE 1. Key differences with standard FCA notations.

Not. | Description Not. | Description

(0] The set of formal objects C% | The family of extents of a context K
A The set of formal attributes C% | The family of intents of K

Cx | The set of formal concepts of K || Lxg | The concept lattice of K

=
5 3
"oéo S g = Elo E —_ 0
X3 =|EIE |8 |E|E| |~ & 3
C© EEEEEEE & |l
HEEEEEEEE K EZ|2
< 28| ®
Author |x x|x| [x FlS|=
Paper X x| x Write X
Reviewer X XX [ % X [ % Compose
Report X X Rate X

FIGURE 1. Contexts K; (of Classes) and Ky (of Object prop-
erties) of CMS ontology.

2. ONTOLOGY RESTRUCTURING UsING RCA

FCA has been successfully applied as a formal framework for the de-
sign/restructuring of class hierarchies in OO languages [4, 6] and of conceptual
hierarchies in knowledge representation [18, 12]. Below, we first recall basic
notions from FCA and RCA, then present the overall restructuring method
and finally state the filtering problem for concept lattices output by RCA.

2.1. RCA basics. The notations we use in the remainder of this paper slightly
diverge from the standard ones. The important differences are summarized in
Table 1.

The aim of RCA [17] is to discover formal concepts on top of multiple ob-
ject sets described by both proper attributes and links. In RCA, data encoding
is done through a structure called Relational Context Family (RCF). RCF is
a pair (K,R), such that: K = {K;}i=1., a set of contexts K; = (0;, A;, I;),
each representing an object species, and R = {7 }r=1, _m a set of relations 7y
where r, C O;, x O, for some 1,42 € {1,...,n}, with O;, (domain of r;) and
O;, (range of ry) are the object sets of the contexts K;, and Kj,, respectively.
Fig. 1 shows two contexts K; and Ky of a Conference Management System
(CMS) ontology representing two classes of ontological entities, concepts and
object properties, respectively (see Fig. 2 for the corresponding concept lattices
Ly and L3).

Existing links between concepts and object properties are represented by
four relations (source, target, domain and range) as showed in Fig. 3. For
instance, the domain relation models the relationship between a property and



STABILITY-BASED FILTERING FOR ONTOLOGY RESTRUCTURING 31

FIGURE 2. The concept lattices of the contexts Kj (left) and

K> (right).
\§‘00 2 8 Q QCg)\ g5 o P §4~ P '924_,
E5|£ e S |3 | Bl © ~|ElE
S EEE @ Z5|3 & |2]5]2lE PSEE ]
ZIol= o= S E R NE
Author  |x Author . |~ || ' ol fa¥Y [ot (o
Paper Paper x| % Write X Write X
Reviewer % Reviewer Compose X Compose X
Report X Report x Rate X Rate X

F1GURE 3. Relations of CMS Relational Context Family.

the own class and the source relation expresses the semantic of “is the domain
of”.

To deal with the relational structure of an RCF, a mechanism called scaling
transforms inter-object links into descriptors for formal objects. As a result,
new attributes called relational are added to the attribute sets A; from the
RCF. Thus, for K; = (0;,4;,1;) € K, A;j is extended with attributes a,. .
where 7 is a relation from R such that dom(r) C Oj;, and c is a concept over
the objects from ran(r). Furthermore, such attributes involve a quantifying
operator (universal, existential, existential with cardinality restriction, etc.).
In our CMS case, all such attributes are assumed to refer to an existential
quantifier. For instance, in Fig. 4 (left hand side), the attribute source:c5 of
the concept cx1 is to be read as: For each class o in the extent of cy1, exists
an object property p in the extent of cys (right hand side) such that o is the
source of p.



32 S. FENNOUH, R. NKAMBOU, P. VALTCHEV, AND M. ROUANE-HACENE

7 8
¥ I={source:cO} ¥ |={target:c5}
¥E={} ¥E={}

\

9

¥ |={source:c6} 0
¥E={}
¥ l={dom:c7, ran:c8}
[ | \ ¥E={}
¥ |={affiliation, name, source:c5} \
6

¥E={} \ S
¥I={dom:c1}
2 ¥E={} ¥l={ran:c2}
a4 / ¥ I={contents, paper, target:c2, target:c3, title} \ YE={}
|

¥ |={author, rank, source:c3} L Ei e
¥ E={Author}

¥ |={dom:c4, write}
Sj \ . \ / / ¥ E={write}
¥ I={email, login, passw, reviewer, source:c1}
¥ E={Reviewer} 1 |
\ / ¥I={compose, dom:c5, ran:c3}
3

¥ E={compose}

Y

¥ I={comments, report, source:c2, target:c1} l

¥ E={Report} 2
¥ I={dom:c3, rate}
¥ E={rate}

FI1GURE 4. The fixed-point lattices of CMS ontology.

The overall process of RCA follows a Multi-FCA method which allows to
construct a set of lattices, called Relational Lattice Family (RLF), one per
relational context. The RLF is defined as a set of concepts that jointly reflect
all attributes and links shared by the objects of the RCF. The logic of this
analysis method is iterative one: Whenever the contexts of RCF are extended,
their corresponding lattices expand as well. At the initialization step, each
context K is obtained from K; by applying a conceptual scaling to the many-
valued attributes in K; and then the lattices [,? are constructed. At the step
p and for each relation r, C O; x Oj, the lattice Ej;_l of the range context
is used to extend the domain context K? and then update the lattice of the
domain context Ef . The process ends whenever at two subsequent steps all
the pairs of corresponding lattices £} and /J?H are isomorphic (i.e., the fix
point solution is reached). For instance, the fixed-point lattices of the CMS
example are depicted in Fig. 4 : within the property lattice (see the right of
the figure), the concept cys summarizes the commonalities of write and compose
which amount to a shared domain class, represented by the concept cxq from
the class lattice (see the left hand side of the figure), that is the super-class of
Author and Reviewer.



STABILITY-BASED FILTERING FOR ONTOLOGY RESTRUCTURING 33

2.2. Restructuring Approach. Our restructuring approach follows five steps:
alignment, encoding, analysis, filtering and reverse encoding. The alignment
step compares the elements of the initial ontology to identify similarities. This
will eliminate redundancies and avoid duplication in the codes of similar on-
tological elements. In encoding step, the initial ontology will be transformed
into a unique Relational Context Family (RCF) where each context represents
a class of ontology metamodel elements (e.g. concepts and roles). Existing
links in the metamodel between these two sorts of elements are represented by
cross-context relations (e.g. source, target, domain and range). The analysis
step consists of construction of the initial lattices (concepts and roles lattices)
with FCA, then translates the cross-context relations into relational attributes
following “relational scaling“ mechanism. Next, the final concept lattices are
constructed according to RCA iterative process converging towards a global
fix-point of the analysis.

Please notice that the final lattices provide the support for the reorgani-
zation of the initial ontology. The filtering phase will filter these lattices by
pruning of uninteresting and spurious formal concepts. The way to proceed
at that stage can be summarized as follows:

(1) 4dentifying the ontological concepts of the domain (from the initial on-

tology),
(2) selecting the relevant new abstractions.

The final step is the reverse encoding that consists to generate semi-automatically
(with the participation of the expert) the restructured ontology model. The
idea is to translate the formal concepts considered as relevant in the filtered
lattices into ontological elements in OWL format.

2.3. Filtering of Concept Lattices. While providing a strong mathemati-
cal background, FCA rises a serious issue that is rooted the overly large-sized
lattices which typically contain many spurious concepts. RCA tends to gener-
ate even larger lattices since it deals with richer data structures. In our con-
text, a formal concept will represent an ontological concept (or class) where
the intent and the extent correspond, respectively, to the set of the properties
of the latter and the set of its sub-concepts.

In the final lattice produced by RCA, each formal concept represents a
candidate likely to be selected as an ontological concept by an expert if deemed
relevant (or otherwise if irrelevant). Thus, two related questions can be asked:

o What is the ontological value of a formal concept?
e How to recognize among the large number of candidates the relevant
ones?



34 S. FENNOUH, R. NKAMBOU, P. VALTCHEV, AND M. ROUANE-HACENE

In studies from the literature, such as [18, 12] aiming at learning or merging
of ontologies with FCA, there is no suggestion on an evaluation method of
formal concept quality. Most of them focus on expert-based validation to
create the target ontology from the final concept lattices. We tried to address
this issue in our context of ontology restructuring using RCA. Our objective is
to propose effective metrics to evaluate the relevance of formal concepts which
will constitute the restructured ontology.

To that end, we took some inspiration from: (1) the principles and require-
ments that must be respected by an ontological model [7]; (2) the work on the
evaluation of ontologies, including those which consider ontology as a graph
and try to detect its structural and semantic characteristics [1]; and (3) met-
rics for lattices pruning [11, 14]. We chose four metrics inclusive two structural
ones: Density indicates the usefulness of a concept in terms of the additional
information it provides w.r.t. its neighborhood. Stability measures the depen-
dency of a concept upon single objects/attributes of its. The remaining two
are semantics-based: Semantic Similarity between children concepts reflects
the semantic correctness of a concept, i.e., to what extent it subsumes similar
sub-concepts. Semantic Similarity with the user center of interest assess the
level to which the concept is rooted in the important concepts from the initial
ontology (in terms of direct or indirect links).

In the following sections, we will focus on the stability measure and discuss
correlation between the stability of a formal concept and the relevance of its
translation as an ontological concept.

3. FILTERING OF RELEVANT CONCEPTS BASED ON STABILITY

3.1. Stability. The idea of stability has been used to assess plausibility of
hypotheses of different kinds. In this line of thought, [10] has introduced the
realization of the idea of stability of hypotheses based on similarity of object
descriptions, and has extended it to the formal concepts. Accordingly, in this
paper, we will study the utility of this measure for the evaluation of the rel-
evance of formal concepts by taking into account the two following points:
(1) Richer structures; and (2) Ontological context. In our work, we use the
definition of stability as follows :

Definition 1. Let K=(0,A,I) be a formal context and (X,Y) be a formal
concept of K. The stability index, o, of (X,Y) is defined as follows :

{(ZzCcX|Z =X =Y}
21X

W o(X,V) =



STABILITY-BASED FILTERING FOR ONTOLOGY RESTRUCTURING 35

With : X, the set of objects (extent) and Y, the set of attributes (intent).
The stability index of a concept indicates how much the concept intent de-
pends on particular objects of the extent. In other terms, the stability index
represents the probability for a concept to preserve its intent even if some ob-
jects of its extent disappear. The idea behind stability is that a stable intent
is probably “real* even if the description of some objects is “noisy “.

3.2. Stability in an Ontological Context. Below, we project stability in
our ontological context and propose an interpretation of the result. In other
terms, the idea is to determine the ontological qualities/characteristics that
can be represented by stability.

In an ontology or a taxonomy, an abstraction is basically a grouping of
sub-classes that share some properties. Then, the set of shared properties con-
stitutes the description of the abstraction. If we focus on relevance as a specific
component of the overall concept quality, then successfully approximating that
quality by stability amounts to showing that the following assumption holds:

Assumption 1. Given a class ¢/ with sub-classes C' = {cy,...,c,} and
described by a set of properties P = {p1, ..., pm} then, the bigger the number
of subsets X C (, such that the members of X share exactly the set of
properties P, the higher the relevance of cl.

In the following sections, we present an experimental study that put this
assumption to test. We present, first, our heuristic of filtering which underlies
the experiments.

3.3. Stability-Based Filtering. Our filtering method has the following over-
all structure:

Inputs:: Relational Lattice Family generated by the RCA-based restruc-
turing method.

Outputs:: Set of formal concepts (those deemed relevant).

Body:: Computation of the evaluation metrics.

The following is a simple heuristic based only on the stability measure.
The principle of this heuristic is illustrated by the following rules. Given a
formal concept FC,

Rule 1:: Extent cardinality = 1 (object concept); Stability is invariably
0.5. The concept is assumed relevant.

Rule 2:: Extent cardinality = 2; Stability is either 0.25 (two sub-concepts)
or 0.5 (single sub-concept). In this case the stability value is unrelated
to the relevance, so the case is deemed inconclusive.

Rule 3:: Extent cardinality > 3; Stability value in the unit interval. A
threshold criterion is applied as follows:



36 S. FENNOUH, R. NKAMBOU, P. VALTCHEV, AND M. ROUANE-HACENE

Rule 3.1:: If value > 0.5 the concept (a stable onel) is deemed relevant,
otherwise, it is irrelevant.

4. IMPLEMENTATION AND VALIDATION STUDY

Below we present the experimental study aimed at testing the Assump-
tion 1.

4.1. Software Environment. Our approach was implemented within the
Inukhuk platform [16] which is a service-oriented infrastructure based on RCA
with a set of tools for Ontological Engineering. Inukhuk includes services for
ontology construction, modularization, merge and restructuring. Inukhuk is
coupled with GALICIA platform providing RCA services, as well as other plat-
forms and APIs (e.g. JENA, WORDNET, WIKIPEDIA, GATE, ALIGN, SIM-
PAK).

An initial work [15] attempted to validate the RCA-based restructuring
framework. Experiments have been carried out on medium-size ontologies
which confirmed the satisfactory performances of the tool in terms of reorga-
nization and identification of new abstractions. These showed the limits of
the “naive” lattice filtering algorithm that was initially implemented and thus
underscored the need for more effective filtering strategies.

Our filtering tool, called RLFDistiller, receives as input an RLF and out-
puts a set of relevant formal concepts. To date, three metrics are implemented:
stability and density to evaluate the structural relevance, and semantic simi-
larity with object concepts to evaluate the semantic relevance.

4.2. Experiments. An appropriate validation of the approach should follow
an outline like: (1) Selection of a set of poorly designed ontologies; (2) Appli-
cation of our restructuring tool to each of these ontologies and generation of
relational lattices; (3) Evaluation by human experts of formal concepts repre-
senting the new discovered abstractions; (4) Application of our filtering tool
on relational lattices; and (5) Correlation between filtering results and experts
judgements.

However, due to the difficulties in obtaining poorly structured yet plausible
ontologies and the scarcity of domain experts eager to collaborate in such
experiments, we proceeded as follows:

(1) Selection of a set of good quality ontologies (complete and with-
out redundancies) which will be considered as reference ontologies.

(2) Focused perturbations of selected ontologies. In order to gen-
erate poorly designed ontologies we introduce redundancies and in-
completeness. Incompleteness comes from removing non leaf classes

IPlease notice that the threshold of 0.5 is the one used in the literature.



STABILITY-BASED FILTERING FOR ONTOLOGY RESTRUCTURING 37

from the class hierarchy. In doing that, we nevertheless preserve the
properties —datatype and object ones— and property restrictions of the
class that disappears: Whenever necessary, these are transferred to the
sub-classes®. In this way, some redundancy may be generated. The
resulting ontologies are called degraded ontologies. It is noteworthy
that due to the way FCA-based restructuring works, all classes in a
degraded ontology will appear in the restructured ontology.

(3) Construction of relational lattices. The restructuring tool is ap-
plied to each degraded ontology and relational lattices are generated.
Such a lattice includes at least the following three categories of for-
mal concepts representing, respectively: (1) initial concepts that are
kept in the degraded ontology; (2) “missing abstractions” (removed
concepts) rediscovered by the tool; and (3) new abstractions discov-
ered by the tool (no equivalent in the reference ontology). In general,
such abstractions could be deemed either relevant or not, by an expert.
However, we intentionally chose complete ontologies so that the only
relevant abstractions discovered by the tool correspond to concepts we
removed.

(4) Application of RLFD:istiller on relational lattices. The tool
outputs a set of relevant formal concepts to become the restructured
ontology.

(5) Confrontation of each restructured ontology with its refer-
ence ontology. In order to measure the accuracy and completeness
of our approach, we use the precision and recall measures as defined
in Information Retrieval [13]. They require, in turn, the calculation of
the following four sets:

e True Positives (TP): Concepts from the restructured ontology
that have an equivalent in the reference ontology.

e False Positives (FP): Concepts from the restructured ontology
that have no equivalent in the reference ontology.

e True Negatives (TN): Formal concepts from the relational lat-
tice deemed irrelevant by the tool that have no equivalent onto-
logical concept in the reference ontology.

e False Negatives (FN): Formal concepts from the relational lat-
tice deemed irrelevant by the tool that have an equivalent onto-
logical concept in the reference ontology.

2Obviously, this way to perturb ontologies ensures that all removed abstractions will be
discovered by the RCA-based tool.



38 S. FENNOUH, R. NKAMBOU, P. VALTCHEV, AND M. ROUANE-HACENE

TABLE 2. Statistics on the reference ontologies.

Ontology name | Classes # | Object prop. # | Datatype prop. # | Individuals #
Cms 6 5 10 0
Travel 34 6 4 14
People 60 14 1 21
Tourism 76 26 27 111

TABLE 3. Examples of perturbations.

Ontology Perturbation

Travel degraded | 1. Remove the RuralArea class and move its property
id_RuralArea to the subclasses.
2. Remove the Activity class and move its properties has-
Activity and isOfferedAt to the subclasses.

People_degraded | 1.  Remove Company class and transfer its property
id_company to the subclasses.
2. Remove Publication class and transfer its properties
id_publication and reads to the subclasses.

We applied the above protocol to a number of small/medium-sized ontolo-
gies whose size-oriented metrics are provided in Table 2. Table 3, in turn,
exemplifies typical focused perturbations.

Now, in the analysis of the results generated by our tool, we followed a
three-fold question as stated below. The goal was to verify to which extent:

(1) Concepts from the degraded ontology have high stability values (>
0.5).

(2) Removed abstractions are represented by formal concepts with high
stability values (> 0.5).

(3) Other discovered abstractions (no equivalent in the reference ontology)
have low stability values (< 0.5).

4.3. Experimental Results. The outcome of our experimental study are
summarized in Table 4 which provides the respective cardinalities for the above
four sets and for each ontology. It also cites the values of the quality metrics.
Below, we illustrate the four cases.
e TP : In the relational lattice of the Travel ontology:
— Concepts cys and cyo3 (see Fig. 5) which represent two abstrac-
tions in the degraded ontology (Destination and UrbanArea, respec-
tively) were deemed relevant (stability values of 0.91 and 0.68,
respectively).



STABILITY-BASED FILTERING FOR ONTOLOGY RESTRUCTURING 39

0.91
‘\5 )
¥ |={Destination}
f o
0.68 _~ [
¥I={UrbanArea} ¥ |={Beach} ¥ I={IdRuralArea}
¥ E={UrbanArea} ¥ E={Beach} / ¥E={}
@1 (32) @) \3}
¥ |=(City} ¥ I=(Town} ¥ ={Farmland} ¥ I={NationalPark}
Z ¥ E={City} ¥ E={Town} ¥ E={Farmland} ¥ E={NationalPark}
®5)
¥ |={Capital}
¥ E={Capital}

FIGURE 5. A part of concept lattice of Travel ontology.

— Concept cya3 (see Fig. 6) representing the removed abstraction
Activity emerged by factoring out shared links to properties; due
to its high stability (0.68), it was labeled relevant by the tool.

e TN : In the Travel ontology again (see Fig. 6) concepts cgas, Cxa2
and cu46 represent newly discovered abstractions. In the lattice, they
are also super-concepts of cya3 (Activity). For instance, cyss groups
Destination and Activity, hence it corresponds to an overly general notion.
All three concepts are deemed irrelevant due to low stability (0.46,
0.48 and 0.49, respectively).

e FP : Concept cygs from the lattice of the People ontology (see Fig.
7) has a stability of 0.75 and is therefore labeled relevant by the tool.
However, the abstraction that it represents is too general so it doesn’t
exist in the reference ontology (grouping subclasses of Adult with sub-
classes of Publication).

e FN : Concept c4g with the People ontology (see Fig. 7) represents the
removed abstraction Publication that was indeed rediscovered. Thus it
is a legitimate concept to keep in the restructured ontology. However,
it was filtered out by the tool since its stability of 0.46 is below the
threshold.

4.4. Discussion. From the above results, the following partial conclusions
could be drawn: First, there is clearly no perfect correlation between stability
of a concept and its relevance. In a slightly more negative tone, stability could
not even be used to order concepts w.r.t relevance: Higher stability does not
necessarily mean higher relevance.



40 S. FENNOUH, R. NKAMBOU, P. VALTCHEV, AND M. ROUANE-HACENE

49
040 G

¥ |={target:c8}
¥ E=
0.48 0
42 2

¥ I={source:c8, target:c9} ‘ ¥ I={AccommodationRating, target:c5}
¥E={} ¥ E={AccommodationRating}

38 ; 0.46
¥ I={source:c5, target:c1} 45

¥ E={Accommodation} ¥ I={source:c10}
- ¥E=(}

37 43
¥ I={source:c9, target:c10} ¥ I={source:c6, target:c2}
¥ E={Destination} ¥E=(}

39 36
¥I=0 ¥I=(} ¥1={ ¥I=
) ¥ E={ ¥ E={Adventure}

¥ E=(Sports} ¥ E=(Sigh

FIGURE 6. A part of concept lattice of Travel ontology.

0.46 0.75 9)
- e ¥ I={id_company}
¥ |={id_publication} ¥ |={target:c18} ¥ E=()
¥ E=(}
54
¥ I={haulage_company}
o 63 ¥ E={haulage_company}
¥ I={newspaper} (5‘.0

¥ I={target:c10} ¥ |={source:c3, target:c15}
¥ I={bus_company}

¥ E={} ={anif
¥ E=( ¥ E=(animal} ¥ E={bus_company}
58
¥ |={broadsheet} 52 ) 67

pESDroadsheet ¥ I={magazine} ¥ I={target:c17}
¥ E=()

* |={tabloid} ¥ E={newspaper} ¥ E={magazine}
¥ E={tabloid}
60
¥ I={quality_broadsheet} @ 34
¥ E={quality_broadsheet} 613 ¥ I={man, target:c13} ¥ |={target:c14, woman}
¥ |1={red_top} ¥ E={man} ¥ E={woman}

¥ E={red_top}

FIGURE 7. A part of concept lattice of People ontology.

On the positive side, 100% of the concepts in the degraded ontologies got
high stability scores and therefore were deemed relevant by the tool. This
speaks in favor of using stability as a component in the target filtering heuris-
tic, possibly complemented by other measures.



STABILITY-BASED FILTERING FOR ONTOLOGY RESTRUCTURING 41

TABLE 4. Final Results of experiments.

Ontology name | TP | FP | TN | FN | Recall | Precision | F-score
Cms 4 10| 2 2 0.66 1 0.80
Travel 33101 3 1 0.91 1 0.95
People 59 | 2 3 1 0.95 0.96 0.95
Tourism D9 211 0.78 0.89 0.83

Next, 37.5% of the rediscovered abstractions were labeled relevant3. While
this rate might seem low, it is worth noting that another 50% got an incon-
clusive label. In theory, these could be retrieved by a different metric in the
final filtering tool. Hence the real recognition rate for missing abstractions as
to the current study is between 37.5% and 87.5%. However, in the assessment
of our tool (see table 4), we took a conservative approach and we re-labeled
all inconclusive cases as irrelevant.

Finally, spurious abstractions discovered by the RCA were filtered out by
the tool with a 51.25% rate whereas another 24.39% were deemed inconclusive
(again chances are they got stricken by another relevance metric). Thus,
the overall pruning rate for irrelevant abstractions lays between 51.25% and
75.64%.

As a general conclusion, in the light of this first batch of experiments,
concept stability seems to be a fair approximation of the relevance in an on-
tological context. Moreover, we tend to see the performances of our filtering
tool as satisfactory and encouraging, in particular, w.r.t. to the improvements
it brings to the complete ontology restructuring tool.

5. RELATED WORK

FCA has been successfully applied to problems arising with class hierar-
chy design, maintenance and refinement [4, 6]. Moreover, several studies have
used FCA as part of a process of ontology engineering. In [12], the authors
have introduced a FCA-based methodology for the design of formal ontologies
for product families. Terms describing the components in a product family
along with the required properties are captured in a lexicon set and put into
context. A class hierarchy is then derived from the concept lattice and ex-
ported into OWL. [18] have explored ontology construction by merging two
existing ontologies provided with a corpus of textual documents. NLP tech-
niques are used to capture the relationships between documents and classes
from an ontology and organize them into a dedicated context. The two con-
texts are then merged and a pruned concept lattice is constructed which is

3Recall that the tool will invariably discover all of them



42 S. FENNOUH, R. NKAMBOU, P. VALTCHEV, AND M. ROUANE-HACENE

further transformed into a merged ontology by a human expert. The pruned
concept lattice is computed with the algorithm TrTANIC. This algorithm com-
putes the formal concepts via their key sets (or minimal generators). A key
set is a minimal description of a formal concept. These key sets are used,
firstly, to indicate if the generated formal concept gives rise to a new concept
in the target ontology or not. A concept is new if and only if it has no key
sets of cardinality one. Secondly, the key sets of cardinality two or more can
be used as generic names for new concepts and they indicate the arity of new
relations.

The notion of stability has been used to prune concept lattices, notably,
in the fields of social network analysis for dealing with communities. The
goal in [11] is to select potentially relevant concepts based on their stability
degrees. The method has been applied to large datasets from other domains
as well. In [14], the authors apply FCA as a representation framework for
the knowledge about the structure of a given knowledge community (based
on shared vocabulary and topics of interests). Stability has been used here to
prune the lattice so that only a sub-hierarchy thereof could be kept, comprising
the most interesting concepts.

6. CONCLUSION AND FUTURE WORK

Our ultimate goal is to improve the structural and semantic quality of an
ontology. To that end, we study a restructuring approach based on a rela-
tional extension of FCA. Here, we focus on a crucial stage of the restructuring
process, i.e., the filtering of the concepts from the output lattices and tackle
the question of assessing their relevance. Relevance being contextual and sub-
jective, we are studying various metrics to approximate it.

In this paper, we examine the stability measure and attempt an evalua-
tion of its usefulness for our goals. We thus carried out a row of experiments
in which we took an existing ontology, purposefully degraded its quality —
structure and completeness—, run our restructuring tools, applied stability-
based filtering, and finally compared the resulting set of concept deemed rel-
evant to the initial ontology. The results of the experiments seem to reveal
the following picture: While the experimental hypothesis of a good correlation
between stability and relevance is not universally valid, which is hardly a sur-
prise. Yet if we restrict the evaluation to formal concepts whose extents have
at least three formal objects (i.e., sufficiently general), the correlation greatly
improves.

The next step of the experimental study would be to put the apparent
threshold of 50% that seems to work relatively well to test: Could this value
be the manifestation of a general phenomenon (e.g., related to the definition



STABILITY-BASED FILTERING FOR ONTOLOGY RESTRUCTURING 43

of stability) or is it a consequence of a bias in our choice of ontologies for the
experiments. On the technical side, further relevance measures are currently
under examination, in particular, ones that bring in some semantics either
by exploiting the input ontology or by exploring external sources (upper on-
tologies, structured vocabularies, etc.). We believe that the ultimate filtering
method should rely on a combination of such measures, hence at a more ad-
vanced stage the exact form of that combination should be investigated.

REFERENCES

[1] H. Alani, C. Brewster: Metrics for ranking ontologies, In: Evaluating Ontologies for
the Web Workshop (EON2006), 15th International World Wide Web Conference, 23-26
May 2006, pp. 11-17.

[2] M. Barbut, B. Monjardet: Ordre et classification: algebre et combinatoire. Vol- ume 2.
Hachette Paris, 1970.

[3] J. Baumeister, D. Seipel: Verification and refactoring of ontologies with rules. In: Man-
aging Knowledge in a World of Networks. Springer (2006) pp. 82-95.

[4] M. Dao, M. Huchard, M.R. Hacene, C. Roume, P. Valtchev: Improving general- ization
level in uml models iterative cross generalization in practice. In: Conceptual Structures
at Work. Springer (2004) pp. 346-360.

[5] B. Ganter, R. Wille: Formal Concept Analysis. Mathematical Foundations. Springer,
Berlin-Heidelberg-New York, 1999.

[6] R. Godin, P. Valtchev: Formal concept analysis-based class hierarchy design in object-
oriented software development. In: Formal Concept Analysis. Springer (2005) pp. 304-
323.

[7] A. Gomez-Perez: Ontological engineering: A state of the art. Expert Update: Knowl-
edge Based Systems and Applied Artificial Intelligence 2(3) (1999) pp. 33-43

[8] T.R. Gruber, et al.: A translation approach to portable ontology specifications. Knowl-
edge acquisition 5(2) (1993) pp. 199-220.

[9] S.M. Henshaw, A. El-Masri, P.A. Sage: Restructuring ontologies through knowl- edge
discovery. In: E-Commerce Technology and the Fifth IEEE Conference on Enterprise
Computing, E-Commerce and E-Services, IEEE (2008) pp. 441-444.

[10] S.O. Kuznetsov: On stability of a formal concept. Annals of Mathematics and Artificial
Intelligence 49(1-4) (2007) pp. 101-115.

[11] S. Kuznetsov, S. Obiedkov, C. Roth.: Reducing the representation complexity of lattice-
based taxonomies. In: Conceptual Structures: Knowledge Architectures for Smart Ap-
plications. Springer (2007) pp. 241-254.

[12] J. Nanda, T.W. Simpson, S.R. Kumara, S.B. Shooter: A methodology for prod- uct
family ontology development using formal concept analysis and web ontology language.
Journal of computing and information science in engineering 6 (2006) pp. 103-113.

[13] C. Rijsbergen: Information retrieval. Butterworths (1975)

[14] C. Roth, S., Obiedkov, D., Kourie, D.: Towards concise representation for taxonomies
of epistemic communities. In: Concept Lattices and their Applications. Springer (2008)
pp. 240-255.

[15] M. Rouane-Hacene, S. Fennouh, R. Nkambou, P. Valtchev: Refactoring of on- tologies:
Improving the design of ontological models with concept analysis. In: Tools with Arti
cial Intelligence (ICTAI). Volume 2., IEEE (2010) pp. 167-172.



44

[16]

[17]

[18]

[19]

S. FENNOUH, R. NKAMBOU, P. VALTCHEV, AND M. ROUANE-HACENE

M. Rouane-Hacene, P. Valtchev, R. Nkambou: Supporting ontology design through large-
scale feca-based ontology restructuring. In: Conceptual Structures for Discovering Knowl-
edge. Springer (2011) pp. 257-269.

M. Rouane-Hacene, M. Huchard, A. Napoli, P. Valtchev: Relational concept analysis:
mining concept lattices from multi-relational data. Annals of Mathematics and Arti
cial Intelligence (2013) pp. 1-28

G. Stumme, A. Maedche: Fca-merge: Bottom-up merging of ontologies. In: TJCAIL
Volume 1. (2001) pp. 225-230.

M.C. Suarez-Figueroa, A. Gomez-Perez: First attempt towards a standard glossary of
ontology engineering terminology. In the 8th International Conference on Terminology
and Knowledge Engineering (2008).

O. Svab-Zamazal, V. Svatek, C. Meilicke, H. Stuckenschmidt: Testing the impact of
pattern-based ontology refactoring on ontology matching results. In: The Tth Interna-
tional Semantic Web Conference, Citeseer (2008) pp. 240-271.

DEPARTMENT OF COMPUTER SCIENCE, UQAM, MONTREAL, CANADA
E-mail address: fennouhs@gmail.com

E-mail address: nkambou@gmail.com

E-mail address: rouanehm@gmail.com

E-mail address: valtchev.petko@ugam.ca



STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LIX, Special Issue 2, 2014
ICFCA 2014: 12th International Conference on Formal Concept Analysis, Cluj-Napoca, June 10-13, 2014

Incremental Computation of Concept Diagrams

FRANCESCO KRIEGEL

ABSTRACT. Suppose a formal context K = (G, M, I) is given, whose con-
cept lattice B(K) with an attribute-additive concept diagram is already
known, and an attribute column C = (G, {n},J) shall be inserted to or
removed from it. This paper introduces and proves an incremental update
algorithm for both tasks.

1. INTRODUCTION

Every formal context K = (G, M,I) can be displayed by means of an
(attribute-additive) diagram of its concept lattice B(K). However, common
algorithms focus on the computation of the concept set B(K) or the concept
neighborhood! < as a whole, and do not provide any hints how to update
the concept set, the concept neighborhood or even the concept diagram? upon
changes in the underlying formal context.

Thus, each change would require a recomputation of the whole concept
diagram. This means that unchanging fragments would be recomputed (which
can be expensive), and furthermore it is then even not guaranteed that the
unchanged parts of the concept diagram can be recognized as unchanged in the
visualization by the user. To overcome this, I investigated the task of inserting
or removing an attribute column into or from a formal context while updating
the corresponding concept diagram with as little effort or visual changes as

Received by the editors: March 31, 2014.

2010 Mathematics Subject Classification. 03G10.

1998 CR Categories and Descriptors. 1.2.4 Knowledge Representation Formalisms and
Methods.

Key words and phrases. Formal Concept Analysis, Concept Diagrams.

IThe concept set may be ordered by extent inclusion, which yields a complete lattice
B(K) = (B(K), <), see second section or GANTER’s book [2] for further details. The concept
neighborhood < is the reflexive-transitive reduction of the concept order <.

2A concept diagram is a twice labeled directed acyclic graph (B(K), <,7 ', u™') induced
by the neighborhood relation on the concept set, together with a function that maps each
node to a position into a vector space, and each node (A, B) is labeled below by all objects
g € G, whose object concept v(g) equals (A, B), and dually labeled above by all attributes
m € M with u(m) = (A, B).

45



46 FRANCESCO KRIEGEL

possible. The algorithm is called iFox,®> and could further be used to deduce
an update algorithm for setting or deleting just a single incidence entry in K,
or for adding or removing a bunch of attribute columns at once, or dualizing
it to the insertion or removal of object rows. 4

The next section gives some preliminaries on basic FCA and some lemmata
for context appositions, the third section then formulates the necessary propo-
sitions to update the concept set, the neighborhood relation, the labels, the
reducibility and seeds (for attributes, when drawing attribute-additive con-
cept diagrams), and the arrow relations, respectivelly. Finally, the algorithm
is formulated in pseudo code and its complexity is determined.

All lemmata and theorems can be found in, or are a condensed represen-
tation of, [4], except the last proposition describing the incremental update
for the down arrows. The references further include some additional hints
from the reviewers. This paper does not cover the incremental computation of
pseudo-intents or implication bases. If you are interested in this topic, please
have a look at OBIEDKOV and DUQUENNE’s paper [5].

2. PRELIMINARIES

2.1. Basics of Formal Concept Analysis. A formal context K = (G, M, I)
consists of two sets G (objects) and M (attributes), and furthermore a binary
relation I C G x M (incidence) between them. For a pair (g,m) that is
enclosed in I, we also write gI'm and say that object g has attribute m (in
context K). A common visualization is a cross table as shown in the figure
below on the left and another one on the right.

M
gl | m] =

m
; xg{g x

[/

A formal concept (A, B) of a context K consists of two sets, an extent A C G
and an intent B C M, such that their cartesian product A x B forms a maximal
rectangle within the incidence relation I, more formally

A=B"={g€G|Vmep gIm} and B = A" := {m € M |Vyea gIm}.

3Historical note: In my time at SAP I implemented a FCA library called fcaFoz, including
an iPred algorithm. Thus, I chose the name iFox for my algorithm for the incremental
computation of concept diagrams.

4If one wants to dualize the algorithm for row insertion or removal, and the concept
diagram is still to be drawn attribute-additivelly, a characterization for the object reducibility
update is neccessary. This can be found in [4].



Incremental Computation of Concept Diagrams 47

ci| }A

[

~——
B

The set of all formal concepts is denoted by B(K), and this set can be ordered
by means of the extents, i.e. concept (A, B) is smaller than or equals concept
(C, D) iff extent A is contained in extent C, symbol: (A, B) < (C, D).

B(K) := (B(K), <) is a complete lattice and its infima and suprema are
given by the equations

/\ (A, By) = ﬂAt,<UBt> and \/ (4, By) = (UAt)H,ﬂBt

teT teT teT teT teT teT

Sometimes the concept lattice of a given formal context shall be visualized
for a highly structured and integrated view on its content. For this purpose the
definition of a concept lattice is extended to the following notion of a concept
diagram.

Definition 1. Let K be a formal context and V. a vector space, e.g. the real
plane R? or the real space R? (or a discrete subset of them like 72 ) for common
visualizations. An attribute-additive concept diagram of K in V is a tuple

§)\,U(}K) = (%(K)7 <, A, U)

with the following components:

(1) the concept lattice (B(K), <) and its neighborhood relation <,
(2) the default label mapping (other choices possible, e.g. extent cardinal-
ity)
B(K) - p(G) x p(M)
b— ({y="0b},{n="0}),
where all object labels in the first component y~1(b) are drawn below
the concept b, and dually all attribute labels in the second component

p=1(b) are drawn above b,
(8) and an arbitrary seed vector mapping o: My, — V.



48 FRANCESCO KRIEGEL

The position of a concept (A, B) in V is then defined as the sum of the seed
vectors of all irreducible attributes in the intent, i.e.

(A, B) := Z o(m).
mEBﬂMirr
2.2. Appositions of Formal Contexts. For two formal contexts (G, M, I)
and (G, N, J) with disjoint attribute sets M NN = () their apposition is defined
as

(G,M,I)|(G,N,J):=(G,MUN,IU.J).
Lemma 2. Let (G, M, I)|(G, N, J) be an apposition context, then the following
equations hold for arbitrary objects g € G and attributes m € M and n € N.
(1) g(IUJ)m < gIm and
g(IUJ)n & gJn
(2) "7 =g Ug’
(8) m'"7 =m! and

0T — )

Proof. The proof is ommitted here, since the given equations are trivial. O

Lemma 3. Let (G,M,I)|(G,N,J) be an apposition context and A C G and
B C M UN. Then the following equations hold:
(1) A" M= A and
AT AN = A7 and
AT — AT A/
(2) (BN M) = (BN M) and
(BNN)Y = (BN N)’ and
B'Y = (Bn M) n(BNN)’
(3) AI 10J9) _ (AIUJ N M) — A gnd
AJ(IUJ) (AIUJ N N) — A and
ATONIUT) _ AT A pTT
(4) (BN M) = (B MU (BN M) and
(BN N)/UY) = (B N)TU(BN N)?7 and
BUONUY)) — (B M) n(BNN))Y U (BN M) n(BnN)’)’

Proof. The proof is obvious, use 2. 00
3. A VERY SIMPLE EXAMPLE

Consider the free distributive lattice FCD(3) with three generating ele-
ments x,y, z, as shown in the figure below. An example is constructed that
shows how an insertion and a removal of one attribute column affect the con-
cept diagram.



Incremental Computation of Concept Diagrams 49

N

>

ENISSENEN

> > |1>|>

gla|8> 3| x|
TAYNZ||X|X|X|X]|X|X|X]|
YNz XX | X | X | 2] X]|X
TNz XX | X[ X|X| 2] X
TAY XX XX |[X|X]
z X |2 XX X
Y X | X | A %X X
T X | X[ X |2 X
T e

Choose all objects and the first six attributes as old context. The attribute
z is to be added. The appropriate contexts and their concept lattices are shown
below.

N
>
KSR

glR| 8> 8>
TAYNZ||X|X|X|X]|X]|X
YNz XX |X|X| 2 X
TNz XX | X | X|X]| 7
TAY XX | X|X|X|X
z X | A X | X
Y X | X | 2| X X
x X | X | X | 2| X
T ol TAYNzZ, TNy

In the initial state above some nodes are marked with a pentagon, these
are the generator concepts. The final state below shows the concept lattice
after insertion of column z, and the new concept nodes are marked with a
star. As you can see the generator structure is locally doubled, and each new
concept is a lower neighbor of its generator.



50 FRANCESCO KRIEGEL

N
>
S N

B8 (8> R |D|w
TAYNZI|X|X|X|X[X]|X]|X
YNz X | X[ X[ X]| 2 X]|X
TNz X | X[ X[ X|X| 2] X
T Ay XX XX | X|X]| 7
z X | 2 X | X X
Y X | X | 2| X X
T X | XX | A X
T e

4. INCREMENTAL COMPUTATION OF CONCEPT DIAGRAMS

Throughout the whole section let K = (G, M, I) be an arbitrary formal
context, called old context, with its concept diagram (B(K), <, A, o). Now the
question arises what happens with the concept diagram when a new attribute
column is inserted into K, or when an existing attribute column is removed,
respectivelly. For this purpose let n ¢ M be the new attribute with its appro-
priate column context C = (G,{n},J). The new context is then defined as
the apposition K|C := (G, M U{n},IUJ). > °

M n

G 1 J

In the ongoing text we analyze the changes that occur on different levels
of the concept diagram: concepts, neighborhood, labels, seeds, reducibility
and arrows. Most of the main results are displayed in a table style: The old
concept diagram on the left side and the new one on the right side, as shown
below.

(B(K),<,\0) = (BK|C),=<,\0)

5For simplification of notion the set parenthesis of the singleton set {n} may be omitted:
The symbol n is used both for the element n itself and also for a singleton set containing this
element n. It is always clear which variant is meant. We thus write (G, n, J) := (G, {n}, J)
for the column context, and BUn := B U {n} or else B\ n:= B\ {n} for an attribute set
BCM.

6Sometimes both the old context K and the new context K|C share the same set of concept
extents; then C is called redundant fir K, and irredundant otherwise.



Incremental Computation of Concept Diagrams 51

Lemma 4. (1) For all object sets A C G the following equivalence holds:
AcCn’ o AT ={n}.
(2) For every concept (A, B) of K|C it holds that
ACn’ =neB.

Proof.

(1) Let A C G. Trivially A7 C {n} always holds. The other set inclusion
follows from the galois property, as A C n” is equivalent to A7 D {n}.
(2) Let (A, B) be an arbitrary concept of K, i.e. B = A% = Al (U A7,
Then by the first part, A C n’ holds, iff A7 = {n} holds. Obviously

this implies n € B. As n ¢ Al always holds, n € B of course implies
Al ={n}.0O

4.1. Updating the Formal Concepts. First, we define a partition of the
formal concept set of the old context K, and dually a partition of the formal
concept set of the new context K|C and then formulate appropriate update
functions, that map the parts of those partitions to each other. This then
fully describes the update mechanism on the concept level from K to K|C and
vice versa.

Definition 5. A concept (A, B) of K is called

(1) old concept w.r.t. C, iff its extent is no subset of the new attribute
extent, i.e. A Z n”,

(2) varying concept w.r.t. C, iff ACn’, and

(3) generating concept w.r.t. C, iff it is old and (AN n’) = B holds.

The set of all old, varying and generating concepts is denoted by O¢(K),
U (K) and &¢(K). Obviously every K-concept is either old or varying, and
each generating concept is particularly an old concept, i.e. {O¢(K),Uc(K)}
is a partition of B(K) and &¢(K) C O¢(K) holds.

Definition 6. A concept (A, B) of K|C is called

(1) old concept w.r.t. C, iff its intent does not contain the new attribute,
i.e. n¢ B,

(2) varied concept w.r.t. C, iff n € B and (B\n)! = A, and

(3) generated (or new) concept w.r.t. C, iff n € B and (B\ n)! # A.

The set of old, varied and generated concepts of K|C is denoted by O (K|C),
P(K|C) and &(K|C). We can easily see, that {O(K|C),U(K|C),B(K|C)}
forms a partition of B(K|C).

As the names suggest, old concepts of K determine old concepts of K|C and
vice versa, K-varying concepts determine K|C-varied concepts, and generating



52

FRANCESCO KRIEGEL

concepts from K induce new concepts of K|C. This is due to the following
three bijections.

Lemma 7. The following three mappings 0, g and v are bijections.

(4,B) — (4, B)
oc®)  Aga’ | ° >f né¢B O[]
(A, B) < (4, B)
5 ]
(4,B) = (ANn’, BUn)
o) B g e R TSR e e
((B\n)",B\n) < (A,B)
(4B~ (4,BUn) _
VoK) Aca’ |4 ’ " (Bcf), 4 DE[C)

(A,B\n)+ (A, B)

Proof. Each of the following parts prove, that the mentioned mappings are
well-defined and bijective. The original proof in [4] used the nested concept
lattice of C in K, the presented proof here is much simpler.

(1) The mapping o and its inverse are well-defined by lemma 4. The lower

mapping is indeed the inverse, as we can easily see.

(2) Let (A, B) be a generating concept of K w.r.t. C, then

(Ann”)Y = Ann”) U ANn’) = BU{n}

as surely n € (ANn’)’ holds (because every object in ANn” has the
new attribute n w.r.t. .J), and

(BU{nH)Y =B 'nn/ = Ann’.

Thus, the mapping g is well-defined. The lower mapping is also well-
defined by the following observation for an arbitrary generated concept
(A, B) of K|C, see also lemma 3

B\{n})II (BﬁM)II (AIUJQM)[I AIII _ AI - .= B\{n}

Both mappings are inverse to each other, as can be seen on the intents.

(3) Let (A, B) be a varying concept of K w.r.t. C, then for the extent

we have A9 = AT U A7 = B U {n} and for the intent we infer
(BU{n})!Y = B'nn/ = Ann’ = A. Conversely for the lower
mapping it holds that AT = A"/ "M = Bn M = B\ {n} and
(B\ {n})! = A by assumption. Both mappings are mutually inverse
by looking on the extents. O



Incremental Computation of Concept Diagrams 53

4.2. Updating the Neighborhood. Of course, when visualizing concept
lattices, it is neccessary to update the concept neighborhood relation as well.
Some first investigations show that there are blocks within the neighborhood
that do not change from K to K|C and vice versa. *

When inserting the new attribute, mainly the lower neighbors of the new
concepts have to be computed. It is already clear that each new concept must
be a lower neighbor of its generating concept. Also, each varied concept can
not have any generator concept as upper neighbor.

For the attribute removal the columns and rows of new concepts of K|C
are just deleted, and the neighborhood between the varying and generator
concepts needs to be determined.

A complete overview is given in the following figure (the bold subrelations
change, and have to be computed; all other parts may be copied).

D¢ (K) &¢(K) Ve (K)

O¢(K)
<o
&¢(K)
Ve(K)| v<o | v=<g <
O(KI[C) &(K|C) N(K|C) YV(KI|C)
O(K|C)
<o
— G6(K|[C)
N(K|C) Do =
B(KIC)| v=<o v=n =

Within the figure the really old concepts are used, that are just the old
concepts which are no generator concept, denoted by

O(K|C) := O(K|C) \ &(K|C) and O¢c(K) :==O¢(K) \ B¢ (K).
Theorem 8. The concept neighborhood relation only changes partially:
(1) Let a,b be two generators in K w.r.t. C, then n(a) <, n(b) holds, iff
[a,6] N &¢(K) = {a,b},

i.e. when there is mo generating concept between a and b.

It easy to see that the neighborhood between old concepts does not change, and so also
for the varying/varied concepts.



54 FRANCESCO KRIEGEL

(2) If a is varying and b a generator, both in K w.r.t. C, thenv(a) y<, n(b)
holds iff

[Cl, b] N 6C(K) N mC(K) = {Cl, b} s

so if there is no generator or varying concept between a and b.
(3) Let a be a varied concept and b a new concept in K|C. Then v~ (a) y=<,
g(b) holds in B(K) iff a y<n b and

(a,09(6)) NO(K|C) = 0.

Proof. 1t is simply a proof by cases. The proof for the unchanging com-
ponents is ommited here, and only the changing fragments are investigated.
Some first clues can be obtained from the neighborhood structure within the
nested concept lattice.

(1) Let first a and b be two generating concepts. When are their gener-
ated new concepts neighboring? This can only be the case when no
other concept is between them, and the only type of concept fitting
between two new concepts is another new concept. In summary, the
corresponding new concepts n(a) and n(b) are neighbors, iff there is
no other generator concept between a and b.

(2) Analogously, let a be a varying concept and b a generating concept.
Then the varied concept v(a) can only be covered by the new con-
cept g(b), when there is no other K|C-concept between them. There
could only be a varied or a new concept between them, and thus the
statement holds exactly when there is no generator or varying concept
between a and b.

(3) This is an immediate consequence of 2. For a varied concept a and a
new concept b, the corresponding varying concept v~!(a) can only be
covered by the generating concept g(b), when there is (in addition to
the condition from 2) no really old concept between v—'(a) and g(b),
since this is the only missing concept type in the characterization of
neighboring varied and new concepts, see 2. 0

4.3. Updating the Labels. Each concept node is labeled with some objects
and attributes. More exactly, each object concept (¢!, g’) where g € G is
labeled with g above, and dually every attribute concept (m!,m!’) where
m € M is labeled with m below.

When changing the context by column insertion or removal, the attribute
label n must be inserted in or removed from the concept diagram, and fur-
thermore some other already existing labels might have to be moved to other
concept nodes. In detail, the object concepts v(g) and the attribute concepts
p(m) have to be investigated to characterize the label update for the column



Incremental Computation of Concept Diagrams 55

insertion or removal. A complete overview for this is given in [4], and the
condensed result is presented in the following proposition.

Proposition 9. (1) When adding the new attribute n, there must be an

(2)

(3)

corresponding attribute concept u(n) that is labeled with n. If n is not
redundant, then this new concept is always generated by the greatest
generator concept

Ty = \/ 6¢(K) = (n/T,n77),

and then p(n) = n(Ty) holds.

For the concept diagram transition from K to K|C only object labels at
previously generator nodes can move downwards to the corresponding
new concept node. No attribute labels change.

Vice versa, for the transition from K|C back to K the attribute label
n is removed and the object labels of a generator concept are merged
with the object labels of the approriate new concept, i.e. let (A, B) be
a generator with object labels L and (C, D) the generated new concept
with object labels M, then (A, B) is labeled with each element from the

union L U M in the old concept dmgmmn.JG ! M n
G M
OKIC)| A
Dc(K)| Ao s ]
Bc(K)| A = : :
N(KIC) Agl x|
Ve (K)| Ay
U (K|C) Ao

Proof. This is easy and straight-forward by analyzing the object and at-
tribute concepts, and determining whether they are old, varying/varied or
generating/new. 0

4.4. Updating the Reducibility and Seeds. In order to maximize the
quality of an attribute-additive concept diagram it is important to know the
irreducible attributes of the context. Each attribute can then be displayed as
the infimum of irreducible attributes, and thus, the set of irreducible attributes
spans the whole concept diagram and it suffices to assign seed vectors just to
the irreducible attributes. Of course, when inserting or removing C to K or
from K|C, the attribute irreducibility may change for the existing attributes.

Proposition 10. The attribute reducibility can be updated via the following
observations:

(1)

Each K-reducible attribute is also K|C-reducible.



56 FRANCESCO KRIEGEL

(2) A K-irreducible attribute m € M is K|C-reducible, iff its K-attribute
concept is varying and the corresponding unique upper neighbor p (m)
is really old, and furthermore at least one superconcept of pgi(m) is a
generator concept.

(8) Every K|C-irreducible attribute is also K-irreducible.

(4) A K|C-reducible attribute m € M is K-irreducible, iff its K|C-attribute
concept is varied and has exactly one old upper neighbor b and overthis
only new upper neighbors, that are generated from superconcepts of b.

Proof.

(1) First, if m is a K-reducible attribute, then the attribute extent m/
can be obtained by an intersection of attribute extents (,,.z m! with
m ¢ B. Obviously then also

m(IUJ) :mI _ ﬂ mI _ ﬂ m(IUJ)
meB meB

holds, hence m is K|C-reducible.

(2) Second, let m be a K-irreducible attribute.

(=) Suppose m is K|C-reducible. If px(m) were an old concept, then
pric(m) = o(ux(m)) and the set of upper neighbors does not
change according to theorem 8. Thus, the irreducibility of m in
K implies the irreducibility of m in K|C. Contradiction! Hence,
the attribute concept px(m) must be varying. By 7, there are no
other old or varied upper neighbors of jigc(m). If g (m) would
be a varying or generating concept, then

m) = m o(ug(m))  if pig(m) € Ve(K)
pijc(m) = v(ug(m)) < {G(M%(m)) k) € Bn )

holds. Let b € &¢(K) with b # puji(m), such that g(b) covers
p|c(m), then ug(m) must be a lower neighbor of b and there
is no varying or generating concept between them. So ux(m) <
pi(m) < b must hold, but this is a contradiction. In summary,
o(pi(m)) or g(pg(m)), respectivelly, must be the unique upper
neighbor of pg|c(m), and m would be K|C-irreducible. Contra-
diction! Hence pg(m) must be an old non-generator concept.



Incremental Computation of Concept Diagrams 57

Finally if there were no generating superconcept above ug(m),
then o(uj(m)) were the only upper neighbor of jgc(m), i.e. m
would be K|C-irreducible. Contradiction!

Suppose the attribute concept ux(m) is a varying concept and
its unique upper neighbor pj (m) is an old non-generator concept
that has at least one generator superconcept. Denote the mini-
mal ones of these generator superconcepts by £1,&2,...,&. Then
the following structure on the left side can be found within the
concept lattice of K. Neighboring concept nodes are connected
by straight line segments and comparable concepts are connected
by zig zag line segments. Then according to theorem 8 the new
concepts g(&1), - - ., 9(§x) must cover the varied attribute concept
v(pur(m)). This is due to the fact, that no varying concept can
be greater than an old concept, and the generators &1,...,& are
minimal. Furthermore pj(m) is the unique upper neighbor of
pr(m), hence there cannot be any varying or generating concept
between px(m) and each &;. In summary, the transition from K
to K|C changes the concept lattice structure as displayed in the
right diagram. Obviously ugc(m) = v(ux(m)) has more than
one upper neighbor, hence m is K|C-reducible.

(3) Let first m € M be a K|C-irreducible attribute. Then m must also be
K-irreducible, as otherwise m were K|C-irreducible by 1.
(4) Second, let m € M be K|C-reducible attribute.

=)

Suppose m is K-irreducible. Then pc(m) must be a varied con-
cept. Otherwise pug(m) = o~ (ug|c(m)) were an old concept and
this is a contradiction to 1. If ugc(m) had more than one old (and
thus non-generating) upper neighbor in B(K|C), then the accord-
ing old concepts in B(K) would cover pux(m). This is a contra-
diction to the K-irreducibility of m. So ug|c(m) has exactly one
old upper neighbor w € O(K|C), all other upper neighbors must
be varied or new concepts. If a varied concept covers jig|c(m),
then its appropriate varying concept covers ug(m) as well. Again,
this is a contradiction to the K-irreducibility. So all other upper
neighbors must be new concepts. If there were any new concept
v € B(K|C) whose generator £ is not a superconcept of w, then
px (m) would be covered by 0=1(£). Then ux(m) had at least two
upper neighbors and this contradicts the K-irreducibility.

Suppose ,uK|<c(m) varies and has exactly one upper neighbor w and
overthis only new upper neighbors v, . . ., v;, whose generators are
greater than w. Then choose ¢; := g(v;) and the same structure



58 FRANCESCO KRIEGEL

as in the right diagram above occurs, and by theorem 8 0~ !(w) =
i (m) must be the unique upper neighbor of yix (m). This means
m is K-irreducible. O

The update of the seed map can now be done with the following rules.

(1) When adding the new column, delete the seeds for K|C-reducible at-
tributes, that were K-irreducible, and introduce a new seed for n.

(2) When removing the column, delete the seed for n and compute seeds
for the previously reducible attributes in K|C, which are now irre-
ducible in K.

irr? R2
irr? R?
X |o Mirr K (C
X OK|C err(K’(C) Mirr(K) ke ( | )
Mirr(K)
X | ok = Mred(K|(C)
Mred(K‘C) Mred(K)
Mred(K) ( )
X lon)n

5. INCREMENTAL COMPUTATION OF THE ARROW RELATIONS

5.1. Updating the Up Arrows. This section investigates the changes for
the up arrow relation. For this purpose the object set and the attribute set is
splitted into the following components:

G ::{g‘ggénj}, Go ::{g’genj}, and

M = {m‘mI§Zn‘]}, Moy = {m"mlcn‘]}
When the column is inserted the block ,x C G x My can simply be
deleted. The only entries to compute is the upper column %, C G x {n}. 8

It is even possible to give a characterization for the "k block for the column
removal.

My Mo My, My n
G Vs G n
1 K - 1
G2| k|c G2| k|c

Proposition 11. (1) Up arrows in K and K|C may only differ on the
subset G1 x My and G1 x {n}. All other parts are equal.
(2) Let g € G1 and m € Ms, then g /'x m holds, iff one of the following
conditions s fulfilled:

80f course, there cannot be any arrows in the lower column Gs x {n} as it is full of crosses.



Incremental Computation of Concept Diagrams 59

(a) m is K|C-reducible, and its attribute concept ugic(m) € B(K|C)
has exactly one old upper neighbor b and overthis only new up-
per neighbors generated by superconcepts of b, and furthermore
Yk|c(g) is a subconcept of b.

el O Hxie(m)TFe B(KIC)
(b) m is K|C-irreducible, ,u]’f{'(c(m) € N(K|C) and the old object con-
cept yxic(9) € O(K|C) is a subconcept of the generator ag(u]}%'(c(m)).
31(Ye B(K|C)

,

VK\c(g)O’/al e N(K|C)
px|c(m)( e B(K|C)

Proof.

(1) This is obvious.
(2) In case g € n” this follows from the preceding lemma as well. Suppose
g & n’. Then the object concept of g in K|C is given by

reelg) = {20E@) i (g) € Oc().
“e o(i(g)  if 1k(g) € Ve(K)

(a) Let m be K|C-reducible. ¢ ,x m can only hold, when m is
irreducible in K, i.e. when jug|c(m) € B(K|C) has exactly one old
upper neighbor w and overthis only new upper neighbors, whose
generators are superconcepts of w, according to 10. Then ofl(w)
is the unique upper neighbor of px (m). Furthermore, 'yK‘C(g) <w
holds, iff vk (g) < px(m), i.e. iff g Sx m.

(b) When m is K|C-irreducible, then m is also K-irreducible by 10.
Furthermore, g ¢ n” implies g X‘K‘C m, i.e. yg|c(g) is no subcon-
cept of ,u]*f('(c(m). If ,u]’l'%'(c(m) is an old concept, then o_l(u]’l‘%'(c(m))
is the unique upper neighbor of

pic(m) = {OI(MKIC(m)) if jixic(m) € O(K|C)
v (uic(m))  if pgjc(m) € B(K|C)



60 FRANCESCO KRIEGEL

Then vk (g) is a subconcept of ug(m), iff yx|c(g) is a subcon-
cept of ,u]’l"('(c(m). As this cannot occur according to the precon-
ditions, g X'x m must hold. If u;f{‘(c(m) is a varied concept,
then nfl(u]’f{'(c(m)) is the unique upper neighbor of ux(m) =
o~ (ugjc(m)). Then yk(g) is smaller than i (m), iff yxc(g) is
a subconcept of F‘]}ch(m)' Thus, g X'x m as well in this case. If
the unique upper neighbor MITQ(C(m) is a new concept, then ac-
cording to 8 g(u]’klc(m)) must be the unique upper neighbor of
px(m) = v~ (ugc(m)). Furthermore 4k (g) can only be a sub-
concept of pj(m), if it is an old concept and a subconcept of the
generator. (If yx(g) would be varying and smaller than the gener-
ator, ’yK‘(C(g) must be smaller than the new generated concept as
well, in contradiction to the preconditions.) In summary, g /g m
holds in this case, iff yg|c(g) is an old concept and smaller than
the generator of the upper neighbor of ygc(m). O

5.2. Updating the Down Arrows. Suppose, g € G is an object and m € M
is an attribute of K. First, observe that by definition of the down arrows it
holds that

g/ g m< gtm and hVGgIQhI:hIm
€

and analogously

9 kecm (g,m) ¢ (IUJ) and V g™ C Y = h (TUJ)m.
heG N—_———
Sgfm hIm

Proposition 12. (1) When g /'gc m holds, then also g /g m holds.
(2) Let g vk m where g ¥ n. Then g /gc m holds, if there is no K-
equivalent object h (i.e. g' = h'), which is not K|C-equivalent to g
(i.e. h J n).
(3) Let g /g m where g J n. Then g /gjc m holds, if each object h € G
with g' C h! also has the new attribute n.

Proof.

(1) This is obvious, since g/ C h! implies gUY) ¢ pdud),

(2) Suppose g does not have the new attribute n, and g g m holds.
When does g k¢ m also hold? For h € G with gm" - K197 it holds
that g/ C h! UR7.

e If g’ C h!, then h I m holds since g ,/x m.
o If g = h! and h J n, then h ¥ m since g does not have m (as

g x m holds).




Incremental Computation of Concept Diagrams 61

Obviously g g|c ™ cannot hold, when the second condition is ful-
filled.
(3) Finally, let g have the new attribute n and g /g m. To check, whether
g« xjc m hold, let h € G be an object, whose K|C-intent is a proper
superset of gIUJ . It then easily follows, that also h must have the
new attribute n and g/ C h! must hold for the K-intents. By the
precondition this yields A I m. Since this is true for all such objects
h, g/ kjc m can be concluded. O

6. CONCLUSION

This document described an update algorithm for the insertion or removal
of an attribute column to or from a formal context, whose concept diagram
is already known. It has been implemented in ConceptExplorer FX, that is
a partial re-implementation of the well-known FCA tool ConceptExplorer by
Serhiy Yevtushenko et al.

The introduced lemmata and propositions may be extended for the inser-
tion or removal of several attribute columns at once, or it may be dualized
for object row insertion or deletion, as also suggested in the introduction.
Furthermore it may be possible to generalize it to insert elements into an arbi-
trary complete lattice, not only to insert new attribute concepts into a concept
lattice (and also for deletion, of course).

REFERENCES

[1] C. Carpineto, G. Romano, Concept Data Analysis : Theory and Applications. Wiley,
2004.

[2] B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations. Springer,
1998.

[3] R. Missaoui, R. Godin, H. Alaoui, Incremental concept formation algorithms based on
galois (concept) lattices. in Computational Intelligence, 11 (1995), pp.246-267.

[4] F. Kriegel. Visualization of conceptual data with methods of formal concept analysis.
Master’s thesis, Technische Universitat Dresden, Faculty of Mathematics, Institute for
Algebra, SAP AG, Research Center Dresden, 2012.

[5] S A. Obiedkov, V. Duquenne, Attribute-incremental construction of the canonical impli-
cation basis. Ann. Math. Artif. Intell., 49 (2007), pp. 77-99.

[6] M. Skorsky. Endliche Verbande - Diagramme und Eigenschaften. PhD thesis, 1992.

[7] P. Valtchev, R. Missaoui, P. Lebrun, A partition-based approach towards constructing
galois (concept) lattices, Discrete Mathematics, 256(2002), pp.801-829.

THEORETICAL COMPUTER SCIENCE, TU DRESDEN, GERMANY
E-mail address: francesco.kriegel@tu-dresden.de



STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LIX, Special Issue 2, 2014
ICFCA 2014: 12th International Conference on Formal Concept Analysis, Cluj-Napoca, June 10-13, 2014

RANKING FORMAL CONCEPTS BY UTILIZING MATRIX
FACTORIZATION

LENKA PISKOVA, TOMAS HORVATH, AND STANISLAV KRAJCI

ABSTRACT. Formal Concept Analysis often produce huge number of for-
mal concepts even for small input data. Such a large amount of formal
concepts, which is intractable to analyze for humans, calls for a kind of
a ranking of formal concepts according to their importance in the given
application domain. In this paper, we propose a novel approach to rank
formal concepts that utilizes matrix factorization, namely, a mapping of
objects and attributes to a common latent space. The lower the distance
between objects and/or attributes in the extent and/or intent of a for-
mal concept in the latent space of factors, the more important the formal
concept is considered to be. We provide an illustrative example of our ap-
proach and examine the impact of various matrix factorization techniques
using real-world benchmark data.

1. INTRODUCTION

Formal Concept Analysis (FCA) [9] is a method for analyzing object-
attribute data. In the basic setting, table entries are 1 or 0 indicating whether
an object has a given attribute or not. FCA aims at finding so-called formal
concepts (as well as the subconcept-superconcept relation among them) from
this data. A formal concept is a formalization of the concept of a ’concept’
which consists of two parts, a set of objects which forms its extension and a
set of attributes which forms its intension [16]. The set of all concepts ordered
by < forms a complete lattice [9].

One of the obstacles in real-world application of FCA is that it often
produces a huge number of formal concepts which can be exponential in the
size of input data (see Table 3).

A kind of a ranking of resulting formal concepts would be beneficial for
a human expert in the process of analyzing the formal concepts. We think

Received by the editors: 25 March 2014.

2010 Mathematics Subject Classification. 06-XX, 06Bxx.

1998 CR Categories and Descriptors. 1.2.m [Computing Methodologies|: ARTIFI-
CIAL INTELLIGENCE — Miscellaneous .

Key words and phrases. Formal Concept Analysis, formal concept, coherence, matrix
factorization.

62



RANKING FORMAL CONCEPTS BY UTILIZING MATRIX FACTORIZATION 63

that such a ranking is domain and/or task specific and strongly depends on
the actual needs of a user (i.e. a domain expert which is intended to use the
outputs of FCA). Because of this, an approach to rank formal concepts should
be intuitive, easily understandable and provide sufficient insight for a user.

In this paper, we propose a novel approach to rank formal concepts that
utilizes matrix factorization, namely, a mapping of objects and attributes to
a common latent space. The lower the distance between objects and/or at-
tributes in the extent and/or intent of a formal concept in the latent space
of factors, the more important the formal concept is considered to be. The
presented approach is intuitive and easily explainable for users. It can be used
together with other approaches to rank formal concepts.

2. RELATED WORK

The reduction of the number of formal concepts and, thus, the size of
concept lattices can be accomplished directly (removing formal concepts that
do not satisfy a requirement) or in an indirect way (through handling formal
contexts).

The aim of the approach in [5] is to find a decomposition of a Boolean
(binary) matrix (formal context) with the smallest number of factors (that
correspond to formal concepts) as possible. These factor concepts can be
considered more important than other concepts of the formal context.

The usage of rank-k£ SVD in order to reduce the size of the corresponding
concept lattice is proposed in [8]. However, SVD is not used to reduce the
number of objects and/or attributes, but instead, to remove noise in an input
table. Subsequently, the number of formal concepts is reduced. In [6], SVD
is used to decompose a document-term matrix into a much smaller matrix
where terms are related to a set of dimensions (factors) instead of documents.
This term-dimension matrix is then converted into a binary matrix using a
probabilistic approach.

The main idea of the JBOS (junction based on object similarity) method
is that groups of similar objects are replaced by representative ones. The
similarity of two objects is the sum of the weights of attributes in which the
objects agree with each other (both objects have them or both do not have
them) [7].

Another way is to reduce the number of formal concepts by means of
attribute-dependency formulas (ADF) expressing the relative importance of
attributes [3]. ADF depend on the purpose and have to be specified by an
expert. Only formal concepts satisfying the set of ADF are relevant. The ap-
proach in [2] also utilizes background knowledge. After a user assigns weights
to attributes, values of formal concepts are determined. Formal concepts with
higher values are considered more important.



64 LENKA PISKOVA, TOMAS HORVATH, AND STANISLAV KRAJCI

The idea of basic level of concepts appeared in [4]. Concepts in the basic
level represent those concepts which are preferred by humans to use when
describing the world around. The cohesion of a formal concept defined in [4],
unlike the coherence proposed in this work, is a measure of whether the objects
in its extent are pairwise similar.

The notion of the stability of a formal concept was introduced in [12].
The stability index indicates how much the intent of a concept depends on
the set of objects in the extent (intentional stability). Extentional stability
was defined analogously. Two other indices, probability and separation, are
proposed in [11] and their performance on noisy data is discussed.

Another option to reduce the size of concept lattices is to consider only
frequent formal concepts for a user given minimum support (Iceberg concept
lattice) [15]. Note that a concept (A, B) is frequent if the fraction of objects
that contain the attributes in B is above the minimum support threshold.

3. FOrRMAL CONCEPT ANALYSIS

A formal context is a triple (X, Y, R) consisting of a set X = {z1,...,z,} of
objects, a set Y = {y1,...,ym} of attributes and a binary relation R C X xY
between them. We write (x,y) € R if the object x has the attribute y.

For a set A C X of objects and a set B C Y of attributes we define
A ={yeY:(Vxe A)(zr,y) € R} and B ' ={z € X : (Vy € B)(z,y) € R}.
A’ is the set of attributes common to the objects in A and B’ is the set of
objects which have all the attributes in B.

A formal concept of (X,Y, R) is a pair (A, B) where AC X, BC Y, A' =
and B = A. A and B are called the extent and the intent of the con-
cept (A, B), respectively. The set of all concepts of (X,Y, R) is denoted by
B(X,Y,R). A C X (B CY)is an extent (intent) if and only if A” = A
(B" = B).

We define a partial order < on B(X,Y, R) by (A1, B1) < (A2, B2)) & A; C
Ay (equivalently, By D Bs). The set of all concepts of (X, Y, R) ordered by <
constitutes the concept lattice (B(X,Y,R),<) of (X,Y, R) [16].

For more details on Formal Concept Analysis we refer to [9].

Example: The formal context in Table 1 induces 26 formal concepts:
= ({1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15}, 0),

CQ — ({1,2,3,5,6,7,10,12,14}, {1}), C3 = ({1,9, 10, 11}, {4}),
— ({4,8,9,10,11,13, 14,15}, {6}),
— ({1,2,3,4,5,6,7,8,9,11,12,13, 15}, {8}),
CoZ (0103, {4, C = (fo.10.10) {4.60)
Cs = ({6 8, 12} {5 8}) Cy = ({4a8a97 11,13, 15}7 {678})7
Cro = ({8, 10,13, 14,15}, {6,10}), C11 = ({1,2,3,4,5,6,7,9, 11,12}, {8,9}),
Cr2 = ({107 14}7 {1>67 10})7 Ciz = ({1797 11}a {47839})a



RANKING FORMAL CONCEPTS BY UTILIZING MATRIX FACTORIZATION 65

TABLE 1. An illustrative example of a formal context of ani-
mals and their attributes (a cross in a row x and a column y
indicates that the object x has the attribute y)

1 2 3 4 5 6 7 8 9 10 11
[]
o § n i % 8 —8 )
% g > g B & "g T? = %
S £ g 7Y 2 s g2 &
- 55z ££% 252§
£ & 8 8 &5 & B £ & 8 =
1 | Bat X X X X X
2 | Bear X X X X
3 | Cat X X X X X
4 | Chicken X X X X X
5 | Dog X X X X X
6 | Dolphin X X X X X
7 | Elephant || x X X X
8 | Frog X X X X
9 | Hawk X X X X X
10 | Housefly || x X X X
11 | Owl X X X X X
12 | Sea lion X X X X X
13 | Snake X X X X
14 | Spider X X X
15 | Turtle X X X X

Ca = ({8,13,15},{6,8,10}), C15 = ({3,4,5},{8,9,11}),

Ci6 = ({10}7 {17 4,6, 10})7 Cir = ({L 2,3,5,6,7, 12}a {17 7,8, 9})7
Cis = ({47 9, 11}a {27 6,8, 9})7 Crg = ({13a 15}’ {3a 6,8, 10})a

Co = ({S}v {5a 6,8, 10})’ Co = ({1}a {1a47 7,8, 9})5

022 = ({67 12}5 {]—7 57 77 87 9}) ) 023 - ({3, 5}, {1, 7, 87 97 11})7

Cos = ({9,11},{2,4,6,8,9}), Co5 = ({4},{2,6,8,9,11}),

Coy = (0,{1,2,3,4,5,6,7,8,9,10,11})

4. OUTLINE OF OUR APPROACH

Each formal context (input data for FCA) can be viewed as a matrix with
n rows representing objects, m columns representing attributes and values 1
or 0 depending on whether an object has a given attribute or not. Thence, we
can refer to a context as a matrix R € {0,1}"*"™.

Consider a formal context R in Table 1, in which objects x1,...,x, € X
are animals and y1, ...,y € Y are attributes which relate to animals, e.g. can
fly, has a backbone, is warm-blooded, etc. Using a matrix factorization method
we can create an approximation of a formal context R by a product of two or



66 LENKA PISKOVA, TOMAS HORVATH, AND STANISLAV KRAJCI

more matrices. Factorizing R means mapping the objects and attributes to a
common k-dimensional latent space, the coordinates of which are called the
factors. For attributes of animals, the discovered factors might measure obvi-
ous dimensions such as whether an animal is a mammal or whether an animal
can fly; less well-defined dimensions such as whether an animal is dangerous
or not; or, completely uninterpretable dimensions. For animals, each factor
measures the extent to which the animal possesses the corresponding factor.
Note that we are not concerned in the exact interpretation of the factors in this
work since it belongs rather to areas of human sciences ( psychology, sociology,
etc.).

We use the idea of mapping of objects and attributes to a common latent
factor space to define the coherence of a formal concept. The coherence is
based on the distance between objects and/or attributes in the common la-
tent factor space; objects which are close to each other share more common
characteristics than objects which are remote from each other (similarly for
attributes). For example, the distance between cat and dog should be small
unlike the distance between cat and housefly. The attributes cold-blooded and
warm-blooded should be remote from each other since these attributes exclude
each other, i.e. if an animal is cold-blooded, it can not be warm-blooded and
vice versa. Naturally, the location of objects and attributes in a latent factor
space is dependent on an input (formal context) what will be seen later in
Section 6.

5. MATRIX FACTORIZATION

For the decomposition of formal contexts (Boolean matrices), Boolean Ma-
trix Factorization is a natural choice. However, we also provided experiments
with other factorization techniques, namely Singular Value Decomposition and
Non-negative Matrix Factorization.

5.1. Boolean Matrix Factorization (BMF). The aim of Boolean Ma-
trix Factorization (BMF) is to find a decomposition of a given matrix X €
{0,1}™™ into a Boolean matrix product

X=A0B (or X~ AoB)
of matrices A € {0,1}"** and B € {0, 1}¥*™. [5]
A Boolean matrix product A o B is defined by
(AoB)y = lelfalx Ay - Byj,

where max denotes the maximum and - the ordinary product.
A decomposition of X = Ao B corresponds to a discovery of k factors that
exactly or approximately explain the data. The least k for which an exact



RANKING FORMAL CONCEPTS BY UTILIZING MATRIX FACTORIZATION 67

decomposition X = A o B exists is called the Boolean rank (Schein rank) of
X.
There are two different problems to solve in BMF:

e Discrete Basis Problem (DBP): Given X € {0,1}™*"™ and an integer
k>0, find A € {0,1}"** and B € {0,1}**™ that minimize || X — Ao
Bl =32 1Xi — (Ao B)yl. [14]
e Approximate Factorization Problem (AFP): Given X and an error
e >0, find A € {0,1}"*F and B € {0,1}**™ with k as small as
possible such that || X — Ao B|| <e. [5]
In this paper, we have used the greedy approximation algorithm for BMF
described in [5] (where it is called Algorithm 2).

5.2. Singular Value Decomposition (SVD). Singular Value Decomposi-
tion (SVD) is a factorization of a matrix X € R™*™ by the product of three
matrices X = UXVT where U € R™", ¥ € R™™ and V € R™*™ such that
UTU = 1,VTV = I (where I is an identity matrix), column vectors of U (left-
singular vectors) are orthonormal eigenvectors of X X7, column vectors of V
(right-singular vectors) are orthonormal eigenvectors of X7 X and ¥ contains
singular values of X at the diagonal in descending order.

We can create an approximation X of a matrix X as

X~=X=UxVvVT,
where U € R"** 3 € RF*F and V € R™*F,

5.3. Non-negative Matrix Factorization (NMF). Let X be an n x m
non-negative matrix and k > 0 an integer. The goal of Non-negative Matrix
Factorization (NMF) [13] is to find an approximation

X ~ WH,

where W and H are n x k and k X m non-negative matrices, respectively.
The matrices W and H are estimated by minimizing the function

D(X,WH) + Reg(W, H),

where D measures the divergence and Reg is an optional regularization
function. The different types of NMF arise from using different cost functions
for measuring the divergence between X and W H, and by regularization of
W and/or H.

The quality of the approximation is quantified by a cost function D. The
common cost function between two non-negative matrices A and B is the
squared error (Frobenius norm)

D(A, B) = Z(aij - bij)Q.

ij



68 LENKA PISKOVA, TOMAS HORVATH, AND STANISLAV KRAJCI

6. THE PROPOSED APPROACH

The notation we use in this and subsequent sections is the following:

e distance(xy,x2) denotes a distance between objects z1 and x9 in the
latent space,
e coherence(C') denotes the degree of coherence of a formal concept C

Let R be a formal context, X = {z1,...,2,} and Y = {y1,...,ym} be the
sets of objects and attributes of R, respectively. After the decomposition of R
each object z; € X is represented by a k-dimensional vector of latent factors
(@i, ..., @) describing the object and each attribute y; € Y is represented
by a k-dimensional vector of factors (y;,...,y;.) describing the attribute.
Obviously, some objects are close to each other, while other objects are far
away from each other (depending on the distance between objects) in the space
of factors.

In our experiments, we have used the Manhattan distance (L; distance)
and the Euclidean distance (Euclidean metric, Ly distance). The distance
between two objects x1,x2 € X (i.e. k-dimensional vectors (z1,,...,21,) and
(x2,,...,xg,) of latent factors) is given by

(Manhattan distance) distance(xy,x2) = |z1, — 9,

x| =
(]~

N
Il
—

(Euclidean distance) distance(xy,x2) = (z1, — x9,)?

x| =
1]~

l

I
-

To have distance € [0,1] we put % to the equations Manhattan distance
and Euclidean distance. The distance between attributes or between an object
and an attribute in the latent factor space can be computed similarly.

One natural way to measure the coherence of a formal concept is by using
the distance (Manhattan, Euclidean) between the objects in the extent of the
formal concept as

max

(1) coherences™ (A, B) =1 — max distance(x1,x2)
x1,r2€A

Alternatively, we might put

Z{th}gA’xl#m distance(z1,x2)
|A|(JA] = 1)/2

Simply, coherence’y®* (A, B) is computed by the maximum distance be-
tween any two objects in the extent of (A, B) and coherence$®(A, B) is com-
puted using the average distance between two objects in the extent of (A, B).
Thus, coherence}f™(A, B) < coherencey®(A, B).

(2) coherencey®(A,B) =1 —



RANKING FORMAL CONCEPTS BY UTILIZING MATRIX FACTORIZATION 69

Formal concepts with similar objects (i.e. objects that share many com-
mon attributes) in their extents have a high degree of coherencey™ and
coherencey’® (provided that similar objects are close to each other while dis-
tinct objects are remote from each other in the space of factors what will be
seen later).

Similarly, the coherence of a formal concept can be measured using the
distance between the attributes in its intent (denoted by coherencey®™ and
coherence‘;vg). Alternatively, we can use the distance between both, the ob-
jects and attributes in the extent and intent of a formal concept, respectively
(denoted by coherence™®* and coherence®®).

It is easy to see that if (A1, By) < (A, By), then coherencey™(Ay, B1) >

coherencey*(Az, B) and coherencey®™ (A1, B1) < coherencey®™ (A, Bo).

Remark: From the above mentioned assumptions it follows that the decision
of whether to use coherencez, or coherenceg(, where 7 = max or 7 = avg,
depends on user/expert preferences. coherence; prefers specific concepts (a
concept is specific if it consists of a few objects that share many attributes, see
Fig. 2) while coherence?X tends to prefer general concepts (a concept is general
if it consists of many objects that have only a few attributes in common, see
Fig. 3).

Now, we are able to assign a degree of coherence to each formal concept of a
formal context. We consider formal concepts with higher degrees of coherence
more important.

6.1. Illustrative Example. In this section we demonstrate our approach on
a small example. It depends on the outcome of a matrix factorization method
whether the results provided by our approach will be good or not. Therefore,
we first address the problem of matrix factorization, and then we analyze the
results themselves.

For the decomposition of the formal context in Table 1 we utilize Boolean
Matrix Factorization (BMF) due to the good interpretability of factors. Using
BMF the animals and their attributes are mapped to 8-dimensional space of
latent factors which is shown in Fig. 1.

The interpretation of the factors might be the following: The first factor
can be interpreted as the property of being a mammal (manifestations of the
factor are: fur (hair), produces milk, has a backbone, warm-blooded) and the
second factor can be interpreted as the property of being a bird (manifestations
of this factor are feathers, lays eggs, has a backbone, warm-blooded). The other
factors relates to the attributes cold-blooded, scales, can fly, lives in water,
domestic, fur (hair), respectively.

The animals bear and elephant are mapped to the same point in the space
of latent factors. The same is true for cat and dog, dolphin and sea lion, hawk



70 LENKA PISKOVA, TOMAS HORVATH, AND STANISLAV KRAJCI

F1GURE 1. The decomposition of the formal context in Table

1 using BMF
— N [ RS Yo NI S [ele)
— — — — — — — —
3 @ @ 3 & @ 3 o
B i |
Q Q Q Q Q Q Q Q
& & & & & &8 &8 &
1 | Bat X X X
2 | Bear X X
3 | Cat X X X
4 | Chicken X X
5 | Dog X X X
6 | Dolphin X X X
7 | Elephant || x X
8 | Frog X X
9 | Hawk X X
10 | Housefly X X X
11 | Owl X X
12 | Sea lion X X X
13 | Snake X X
14 | Spider X X
15 | Turtle X X
GC.:J
E“) % o F% o)
= s 2 T 3
~ s =%
= g B 3 = .9
= & L2 288 & 2 2%
S 2 8F 52 2 = g3 ¢
s = n o, 9 . Z T g
5 =8 £ £ = 2 & £ 5 5
£ & % 3 52 5 a o B © T
factor 1 || x X X X
factor 2 X X X X
factor 3 X
factor 4 X X X
factor 5 X
factor 6 X X
factor 7 X X X
factor 8 || x

and owl as well as snake and turtle. According to Table 1 these animals agree
with each other, i.e. either all of the animals have some attribute or none of
them. In the contrary, for the animals owl and sea lion, if one of the animals
has a factor, then the second one does not have the factor. Correspondingly,
if owl has an attribute in the formal context in Table 1, then sea lion does not
have the attribute and vice versa (except for the attributes has a backbone and
warm-blooded contained in the manifestations in both of the first two factors).



RANKING FORMAL CONCEPTS BY UTILIZING MATRIX FACTORIZATION 71

In the space of factors, the attributes lays eggs and cold-blooded differ only
in the second factor. All the animals in the formal context in Table 1 except
for chicken, hawk and owl (e.g. except for birds) agree on these attributes.

After the decomposition of the formal context in Table 1, we can measure
the distance between animals (objects) and/or their properties (attributes) in
the space of factors. Using Manhattan distance, distance(bear, elephant) = 0,
distance(owl, sea lion) = 3, distance(lays eggs, cold-blooded) = %.

It is important to notice that the location of objects and attributes in the
common factor space depends on the formal context, mainly on the selection
of appropriate attributes. A formal context that does not contain “good”
attributes may cause that different animals will have many factors in common.

For each formal concept of the formal context in Table 1 we can compute
the degree of coherence. For example,
coherence’y™(Cig) =1 — 2 = 0.75,

coherencey ®(Cig) =1 — §+§+0 =1-1=2
coherencey™(Cig) =1 —2% = 02.5,4 L
coherencey’®(Cig) =1 — w —1-3=3
Formal concepts C1,...,Co and their degrees of coherence are shown in

Table 2. Remember that the higher the coherence, we consider the formal
concept more important.

FIGURE 2. The concept lattice of animals. The formal con-
cepts with coherence:‘;}'g greater or equal to 0.85 using BMF
are highlighted in black



72 LENKA PISKOVA, TOMAS HORVATH, AND STANISLAV KRAJCI

TABLE 2. The coherence (computed using Manhattan dis-
tance) of the formal concepts of Table 1 rounded to two decimal

places
intent of (A, B) coherence of (A, B)
[5)
g o

5 2 2% i |hla]ile
= £, 2 T8 ol 8|88 Y Y
R >, 2 % ¢ 22 22 §| 55|58 |8
£ 2 8F 7 ¢35 s 25 ¢ 5| 555|585
L 2 =2 2 €28 4 532 8| 2 < | < < < <
E £ 3§ 8 2% A & £ 8 2 8 S S 3 3 S
1. 0.38 | 0.60 | 0.38 | 0.60 | 1.00 | 1.00
2. | x 0.50 | 0.78 | 0.50 | 0.76 | 1.00 | 1.00
3. X 0.63 | 0.75 ] 0.63 | 0.71 | 1.00 | 1.00
4. X 0.38 | 0.64 | 0.38 | 0.63 | 1.00 | 1.00
5. X 0.25 | 0.57 | 0.38 | 0.59 | 1.00 | 1.00
6. | x X 0.63 |1 0.73 ] 0.75 | 0.75 | 0.63 | 0.63
7. X X 0.50 | 0.70 | 0.63 | 0.75 | 0.50 | 0.50
8. X X 0.38 | 0.65 | 0.63 | 0.75 | 0.50 | 0.50
9. X X 0.38 | 0.60 | 0.50 | 0.63 | 0.50 | 0.50
10. X X 0.50 | 0.76 | 0.63 | 0.75 | 0.88 | 0.88
11. X X 0.25 |1 0.63 | 0.38 | 0.66 | 0.75 | 0.75
12. | x X X 0.38 | 0.65 | 0.88 | 0.88 | 0.38 | 0.58
13. X X X 0.25 | 0.60 | 0.63 | 0.75 | 0.25 | 0.50
14. X X X 0.38 | 0.70 | 0.75 | 0.83 | 0.38 | 0.58
15. X X x 10.50 | 0.71 | 0.63 | 0.75 | 0.50 | 0.67
16. | x X X X 0.38 | 0.60 | 1.00 | 1.00 | 0.38 | 0.58
17. | x X X X 0.25]0.74 1 0.75 | 0.85 | 0.38 | 0.65
18. X X X X 0.38 | 0.68 | 0.75 | 0.83 | 0.50 | 0.63
19. X X X X 0.38 | 0.74 | 1.00 | 1.00 | 0.38 | 0.65
20. X X X X 0.38 | 0.60 | 1.00 | 1.00 | 0.38 | 0.56
21. | x X X X X 0.25 | 0.61 | 1.00 | 1.00 | 0.25 | 0.60
22. | X X X X X 0.38 | 0.67 | 1.00 | 1.00 | 0.38 | 0.63
23. | x X X X x 1 0.38 [0.70 | 1.00 | 1.00 | 0.38 | 0.65
24. X X X X X 0.25 | 0.64 | 1.00 | 1.00 | 0.25 | 0.58
25. X X X X x 1 0.50 [ 0.68 | 1.00 | 1.00 | 0.50 | 0.63
26.| X X X X X X X X xX x x[0.25]0.63|1.00]|1.00|0.25]|0.63

The most coherent formal concepts using coherence?g (the 4th column
in Table 2) sorted in descending degree are Cig, Cig — Ca5, C12 and Cy7
(Fig. 2). The formal concepts Cig, Cag, Ca3, Ci2 and Cj7 can be named
as “reptiles” (snake, turtle), “sea mammals” (dolphin, sea lion), “pets” (cat,
dog), “invertebrate animals” (housefly, spider) and “mammals” (bat, bear, cat,
dog, dolphin, elephant, sea lion), respectively.

Next, consider the most coherent concepts using the coherence measured
on the attributes only coherencey® (the 5th column in Table 2). The concepts
in descending order of the degree of coherence are Cy — Cs, C1g, Ci1, Cg, C7,
Cg, Cg, 015, 018 and 025 (Fig. 3). The COHCGptS 05, 010, 011, Cg, 015 and



RANKING FORMAL CONCEPTS BY UTILIZING MATRIX FACTORIZATION 73

FiGURE 3. The concept lattice of animals. The formal con-
max

cepts having coherencey®™ greater or equal to 0.75 using BMF
are highlighted in black

(g represent “vertebrate animals”, “cold-blooded animals”, “warm-blooded
animals”, “aquatic animals”, “domestic animals” and “birds”.

The interpretation of other results (i.e. these provided by coherence™*,
coherence®™®, coherence’™ and coherencel®) is left to the reader.

The decision of whether to compute the coherence on objects or attributes
as well as the use of coherence™?®* or coherence®® depends on the purpose of
the concrete application of FCA on the data and also on other user-related

factors.

7. EXPERIMENTS

In this section, we present some experiments we have performed to give a
deeper insight into the behaviour of the proposed method for ranking formal
concepts. Benchmark data sets used for these experiments are taken from the
UCI Machine Learning Repository [1] characteristics of which are shown in
Table 3.

7.1. Experiment 1. In the first experiment, we have explored the degrees of
coherence that are assigned to formal concepts.

Using Boolean Matrix Factorization (BMF) for the decomposition of for-
mal contexts we have found out that (see Table 4):



74 LENKA PISKOVA, TOMAS HORVATH, AND STANISLAV KRAJCI

TABLE 3. Some characteristics of the used data sets in our experiments

‘ Dataset H # Objects ‘ # Attributes ‘ # Factors (BMF) ‘ # Formal Concepts ‘

Car 1728 25 25 12640
Spect Heart 267 46 46 2135549
Tic-tac-toe 958 29 29 59505

Wine 178 68 57 24423

e Many concepts of the formal contexts (data sets) have the same de-
gree of coherence if we measure the coherence using maximum dis-
tance between objects and/or attributes in the factor space. For
example, for wine data set the total number of formal concepts is
24423, each of which is assigned 1 out of 12 degrees of coherence (us-
ing coherence™®).

e The number of distinct coherence values computed by the maximum
distance is identical using either of the two distance measures (Man-
hattan, Euclidean).

e coherence'y™ and coherencei}’g provide more distinct coherence values
than coherencey® and coherence?)’g, respectively. It follows from the
fact that the number of objects is greater than the number of attributes
for each data set.

e It is appropriate to utilize the Euclidean distance instead of the Man-
hattan distance for measuring the coherence, because the number of
distinct degrees of coherence that are assigned to formal concepts is
greater if we use the Euclidean distance (what is not surprising, since
the factor matrices are binary, i.e. contain only Os and 1s).

e For tic-tac-toe data the number of distinct degrees of coherence as-
signed to formal concepts using coherencey™ and coherence?,vg is very
small, because each attribute possesses a unique factor no other at-
tribute has.

We can conclude that, using BMF, the same coherence degree is assigned
to many formal concepts (see Table 4). These concepts are then ranked at the
same position which is not useful for a user.

We have also carried out similar experiment where SVD and NMF were
used for the decomposition of formal contexts. Remember that factor matrices
generated by SVD and NMF are real-valued matrices. Therefore, using the
average distance between objects and/or attributes in a factor space, almost
all formal concepts take on different degrees of coherence. Further, using the
maximum distance between objects and/or attributes in a space of factors, the
number of distinct degrees of coherence is greater (in comparison to the case
of using BMF) when we use SVD or NMF for the decomposition of formal
contexts.



RANKING FORMAL CONCEPTS BY UTILIZING MATRIX FACTORIZATION 75

TABLE 4. The numbers of distinct values of coherence that the
formal concepts of the formal contexts (data sets) take on using

the respective ways of measuring the coherence (BMF was used
for decomposition of data sets)

Manhattan distance Euclidean distance

5 50 % 0 % o0 % 0 % o0 % 50
g 3 Ex | ZX | Ex| &> | E H Ex 3= Ex | 5

< < < < < < < < < < < <

) () [\ ) 8] () ) ) ) ) 8} 8]

~ = =~ ~ ~ = =~ = = = =~ =

Q 8] Q L Q L L i8] 8] Q 8] Q

< < < < < | < | < < < < < | <

Dataset S 3 S S 8| 8|8 3 S S S| 8
Car 7 826 | 8 609 | 6| 28| 7 2326 | 8 1381 | 6 57
Spect Heart || 15 | 231041 | 25 | 153976 | 5| 127 | 15 | 2072196 | 25 | 1969571 | 5| 372
Tic-tac-toe 8 1156 | 10 1048 | 2 2| 8 6557 | 10 5402 | 2 6
Wine 12 4906 | 16 3127 | 17| 651 | 12 24360 | 16 16868 | 17 | 8132

The use of SVD and NMF in our approach allow us to differentiate better
between formal concepts with respect to degrees of coherence, and thus are
better for ranking formal concepts according to their coherence. From this
point of view, it is also appropriate to measure the coherence utilizing the av-
erage distance (not the maximum distance) between objects and /or attributes
in the extents and/or intents of formal concepts, respectively.

7.2. Experiment 2. The aim of the second experiment is to investigate the
impact of matrix factorization methods on the selection of important (coher-
ent) formal concepts. Hence, we have compared the top-k most coherent for-
mal concepts resulting from our approach by using various methods of matrix
decomposition.

Based on the conclusions of the previous experiment, matrix factorization
methods that decompose a matrix into a product of real-valued matrices are
better if we want to rank formal concepts according to their degrees of co-
herence. Thus, in this experiment we have used SVD and NMF for matrix
decomposition.

For a formal concept (A, B) it holds that if |A] < 1 (|B| < 1), then
coherence’, = 1 (coherencel, = 1), where ? = max or ? = avg. The number of
formal concepts satisfying these conditions, and thus having the corresponding
degrees of coherence equal to 1 are shown in Table 5. Since this assertion holds
regardless of the selected method of matrix factorization, we did not consider
such formal concepts in this experiment. Obviously, formal concepts that do
not satisfy these conditions can also have degrees of coherence equal to 1.

The results of the comparison of the top-k most coherent formal concepts
using SVD and NMF are shown in Fig. 4 — Fig. 7.



76 LENKA PISKOVA, TOMAS HORVATH, AND STANISLAV KRAJCI

TABLE 5. The number of formal concepts (A, B) such that
|A|<1lor|B| <1

Dataset # Formal Concepts # Formal Concepts
(A, B) having |A| <1 (A, B) having |B| <1
Car 1729 23
Spect Hear 215 44
Tic-tac-toe 959 30
Wine 169 37
Car dataset Car dataset

—o— coherence™ -+ coherencey - ccherence?"*
va

& coherence™ -x- coherencey® —¥- coherencey

—o— coherence™ -+ coherencey —o- coherenceg‘“
vg

-~ coherence™ %~ coherencey” -7~ coherencey

100

80
L
o l%
*
x

40

20

Percentage of the same formal concepts
60
P
+
x®
Percentage of the same formal concepts
0
L

T T — T T T T T T T T
100 200 300 400 500 600 700 800 00 1000 100 200 300 400 500 600 700 800 200 1000

Top-k formal concepts Top-k formal concepts

(a) Manhattan distance (b) Euclidean distance

FIGURE 4. The percentage of the same formal concepts from
the top-k formal concepts using SVD and NMF for the decom-
position of Car dataset using Manhattan distance (Fig. 4(a))
and Euclidean distance (Fig. 4(b)).

The used matrix factorization method has only a little influence on formal
concepts provided by coherence®”® (except for the Spect Heart dataset). Ap-
proximately 80% of formal concepts provided by coherence® & are the same
if we decompose data sets using SVD or NMF (for the Car and Tic-tac-toe
datasets). On the other hand, coherence™, coherence}®™* and coherence?/vg
are quite sensitive on the selected method of matrix decomposition. The re-
sults are similar regardless of the computation of the distance in a space of

factors (Manhattan distance, Euclidean distance).

8. CONCLUSIONS

We have introduced a novel approach to rank (and thus to reduce the
number of) formal concepts utilizing different types of matrix factorization
methods. Besides the intuitive choice, the Boolean Matrix Factorization tech-
nique (BMF), we have utilized also Singular Value Decomposition (SVD) and
Non-negative Matrix Factorization (NMF). As our experiments showed, using



RANKING FORMAL CONCEPTS BY UTILIZING MATRIX FACTORIZATION

Spect Heart dataset

Spect Heart dataset

—&— coherence™ +- oohereﬂceg\""lstV coherence}™
& coherence™ %~ coherencey” -7~ coherencey”

+x
+x

Oemmzzgooos

Percentage of the same formal concepts
60
L

Qe e Biveees B imores Revms B Boes

100 200 300 400 500 600 700 800

Top-k formal concepts

(a) Manhattan distance

Percentage of the same formal concepts

—&— coherence™ coherenceg‘rfo— coherencel™
& coherence™ -x- coherencey” —¥- coherencey’®

4
%
x

200

300 400 500 600 700 800 200 1000

Top-k formal concepts

(b) Euclidean distance

FiGURE 5. The percentage of the same formal concepts from
the top-k formal concepts using SVD and NMF for the decom-
position of Spect Heart dataset using Manhattan distance (Fig.
5(a)) and Euclidean distance (Fig. 5(b)).

Tic-tac-toe dataset

Tic-tac-toe dataset

—=— coherence™ -+

mhersncag;—e-- coherencey™
& coherence™? -~

coherencey™® ~w- coherencey”®

Percentage of the same formal concepts
60
|

400

500 600 700

Top-k formal concepts

(a) Manhattan distance

Percentage of the same formal concepts

—=— coherence™ -+ mherancsg‘:;«» coherencel ™
& coherence®™? ~%- coherencey” ~w- coherencey’?

R ——
T

100 200 300 400 500 600 700 00 1000

Top-k formal concepts

(b) Euclidean distance

FIGURE 6. The percentage of the same formal concepts from
the top-k formal concepts using SVD and NMF for the decom-
position of Tic-tac-toe dataset using Manhattan distance (Fig.
6(a)) and Euclidean distance (Fig. 6(b)).

77

BMF in our approach results in a case when only a small number of distinct
values are assigned to formal concepts and thus many formal concepts have
the same degree of coherence which is not helpful in ranking. However, having
just a small number of different ranking degrees could be interesting in some
cases of application of FCA to data.

The main research issue we would like to focus on the following issues:



78 LENKA PISKOVA, TOMAS HORVATH, AND STANISLAV KRAJCI

Wine dataset Wine dataset

—o— coherence™ -+ coherencey -o- coherencey
& coherence™ -x- coherencey” —¥- coherencey’®

—o— coherence™ -+ coherencey  -<-- coherencey
& coherence™ %~ coherencey” -7~ coherencey”

100

40

Percentage of the same formal concepts
60
Percentage of the same formal concepts

. |
100 200 300 400 500 600 700 800 00 1000 100 200 300 400 500 600 700 800 200 1000

Top-k formal concepts Top-k formal concepts

(a) Manhattan distance (b) Euclidean distance

FiGURE 7. The percentage of the same formal concepts from
the top-k formal concepts using SVD and NMF for the decom-
position of Wine dataset using Manhattan distance (Fig. 7(a))
and Euclidean distance (Fig. 7(b)).

e Experimental evaluation of the proposed approach on several real-
world data sets including qualitative evaluation of the results by do-
main experts.

e Comparison with other techniques to select important formal concepts,
in particular with the one for selecting basic level concepts [4].

Acknowledgements: This publication is the result of the Project implemen-
tation: University Science Park TECHNICOM for Innovation Applications
Supported by Knowledge Technology, ITMS: 26220220182, supported by the
Research & Development Operational Programme funded by the ERDF and
VEGA 1/0832/12.

REFERENCES

[1] K. Bache, M. Lichman, UCI Machine Learning Repository. 2013. URL
http://archive.ics.uci.edu/ml.

[2] R. Bélohldvek, J. Macko, Selecting Important Concepts Using Weights. International
Conference on Formal Concept Analysis, LNAI, vol. 6628, Springer, 2011, pp. 65-80.

[3] R. Bélohldvek, V. Sklendf, Formal Concept Analysis Constrained by Attribute-
Dependency Formulas, International Conference on Formal Concept Analysis, LNAI,
vol. 3403, Springer, 2005, pp. 176-191.

[4] R. Bélohlavek, M. Trnecka, Basic Level of Concepts in Formal Concept Analysis. Inter-
national Conference on Formal Concept Analysis, LNAI, vol. 7278, Springer, 2012, pp.
28-44.

[5] R. Bélohldvek, V. Vychodil, Discovery of optimal factors in binary data via a novel
method of matrix decomposition. Journal of Computer and System Sciences, vol. 76,
2010, pp. 3-20.



[6]

[7]

RANKING FORMAL CONCEPTS BY UTILIZING MATRIX FACTORIZATION 79

V. Codocedo, C. Taramasco, H. Astudillo, Cheating to achieve Formal Concept Analysis
over a large formal context. Concept Lattices and Their Application, 2011, pp. 349-362.
S. M. Dias, N. J. Vieira, Reducing the Size of Concept Lattices: The JBOS approach.
Concept Lattices and Their Application, CEUR WS, vol. 672, 2010, pp. 80-91.

P. Gajdos, P. Moravec, V. Snéasel, Concept Lattice Generation by Singular Value De-
composition. Concept Lattices and Their Application, 2004, pp. 102-110.

B. Ganter, R. Wille, Formal concept analysis: Mathematical foundations. Springer, 1999.
J. Han, H. Cheng, D. Xin, X. Yan, Frequent pattern mining: current status and future
directions. Data Mining and Knowledge Discovery, vol. 15, 2007, pp. 55-86.

M. Klimushkin, S. Obiedkov, C. Roth, Approaches to the Selection of Relevant Concepts
in the Case of Noisy Data. International Conference on Formal Concept Analysis, LNAI,
vol. 5986, Springer, 2010, pp. 255-266.

S. O. Kuznetsov, On stability of a formal concept. Annals of Mathematics and Artificial
Intelligence, vol. 49(1-4), 2007, pp. 101-115.

D. D. Lee, H. S. Seung, Algorithms for non-negative matriz factorization. Advances in
neural information processing systems, vol. 13, 2001.

P. Miettinen, T. Mielikdinen, A. Gionis, G. Das, H. Mannila, The Discrete Basis Prob-
lem. IEEE Transactions on Knowledge and Data Engineering, vol. 20(10), 2008, pp.
1348-1362.

G. Stumme, Efficient Data Mining Based on Formal Concept Analysis. DEXA, Springer,
LNCS, vol. 2453, 2002, pp. 534-546.

R. Wille, Restructuring lattice theory: An approach based on hierarchies of concepts.
Ordered Sets, vol. 83, 1982, pp. 445-470.

INSTITUTE OF COMPUTER SCIENCE, FACULTY OF SCIENCE, PAVOL JOZEF SAFARIK

UNIVERSITY, JESENNA 5, KOSICE, SLOVAKIA

E-mail address: {lenka.piskova, tomas.horvath, stanislav.krajci}@upjs.sk



STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LIX, Special Issue 2, 2014
ICFCA 2014: 12th International Conference on Formal Concept Analysis, Cluj-Napoca, June 10-13, 2014

TRIADIC APPROACH TO CONCEPTUAL DESIGN OF XML
DATA

CHRISTIAN SACAREA AND VIORICA VARGA

ABSTRACT. As XML becomes a popular data representation and exchange
format over the web, XML schema design has become an important re-
search area. Discovering XML data redundancies from the data itself be-
comes necessary and it is an integral part of the schema refinement (or
re-design) process. Different authors present the notion of functional de-
pendency in XML data and normal forms for XML data. Yu and Yagadish
(2008) give the definition of the Generalized Tree Tuple (GTT) and XNF
normal form. They present also a hierarchical and a flat representation
of XML data. The hierarchical representation of XML data from the pa-
per of Yu and Yagadish (2008) is used to define a triadic FCA approach
for a conceptual model of XML data. The formal tricontext of functional
dependencies with respect to a tuple class is given.

1. INTRODUCTION AND PREVIOUS WORK

The goal of relational database design is to generate a set of relation
schemas that allows us to store information without unnecessary redundancy.
The relation scheme obtained by translating the Entity-Relationship model is
a good starting point, but we still need to develop new techniques to detect
possible redundancies in the preliminary relation scheme. The normal form
satisfied by a relation is a measure of the redundancy in the relation. In or-
der to analyze the normal form of a relation we need to detect the functional
dependencies that are present in the relation.

XML is a popular data representation and exchange format over the web.
XML data design must ensure that there are no unintended redundancies,
since these can generate data inflation and transfer costs, as well as unneces-
sary storage. Hence, the good design of XML schemas is an important issue.
Redundancies are captured as functional dependencies in relational databases

Received by the editors: March 25, 2014.

2010 Mathematics Subject Classification. 68P15, 03G10.

1998 CR Categories and Descriptors. H.2.1 [Database Management|: Logical design —
Scheme and subschema.

Key words and phrases. XML data design, Formal Concept Analysis.

80



TRIADIC APPROACH TO CONCEPTUAL DESIGN OF XML DATA 81

and it is expected that they play a similar role in XML databases, having
specific properties and features due to the structure of XML data.

XML functional dependencies (XML FD) have become an important re-
search topic. In 2004, Arenas and Libkin ([1]) adopted a tree tuple-based
approach, defining for the first time an XML FD and a normal form. Yu and
Jagadish prove in [19] that the previously introduced notions of XML FD are
insufficient, and propose a generalized tree tuple-based XML FD.

Formal Concept Analysis offers an algebraic approach to data analysis
and knowledge processing. Hence, it lies at hand to use FCA for mapping
conceptual designs into XML schemas, since the XML data model is both hi-
erarchical and semistructured. The notion of dependencies between attributes
in a many-valued context has been introduced in [4], by Ganter and Wille.
J. Hereth investigates in [6] how some basic concepts from database theory
translate into the language of Formal Concept Analysis. He defines the power
context family resulting from the canonical translation of a relational data-
base. Regarding this power context family, he defines the formal context of
functional dependencies. A detailed analysis and complex examples of the for-
mal context of functional dependencies for a relational table are presented in
[9]. Determining the implications in this context is investigated in [10], using
a specially designed software. These are syntactically the same as functional
dependencies in the analyzed table.

Uncovering functional dependencies in XML using FCA has been studied
in [13]. AN XML document is read and the formal context corresponding to the
flat representation of the XML data is constructed. XML data is converted into
a fully unnested relation, a single relational table, and existing FD discovery
algorithms are applied directly. The implications are exactly the functional
dependencies in the analyzed XML data. This study is continued in [8] and [7].
Here a framework is proposed, which parses the XML document and constructs
the formal context corresponding to the flat representation of the XML data.
The concept lattice is a useful graphical representation of the analyzed XML
document’s elements and their hierarchy. Keys and functional dependencies in
XML data are determined, as attribute implications in the constructed formal
context. Then, the scheme of the XML document is transformed in GTT-XNF
using the detected functional dependencies.

In this article the hierarchical representation of XML data from the paper
of Yu and Yagadish (2008) is used to define a triadic FCA approach for a con-
ceptual model of XML data. The novelty of the paper is this triadic approach
and the proposed formal tricontext of functional dependencies with respect to
a tuple class.



82 CHRISTIAN SACAREA AND VIORICA VARGA

2. MINING FUNCTIONAL DEPENDENCY IN XML DATA

XML functional dependency has been defined in different ways, but no gen-
erally accepted definition exists. The main problem with defining functional
dependency for XML databases is the absence of the definition of a tuple con-
cept for XML. Arenas and Libkin defined tree tuples based upon Document
Type Definition (DTD) schema [1]. In [13] an FCA based approach is given
to find functional dependency in XML data as using the approach from [1].
In this approach, the XML document is read and then the formal context
corresponding to the flat representation of the XML data is constructed. Here
we derive the list of implications, these implications are exactly the functional
dependencies in the analyzed flat representation of XML data.

Hartmann et al. [2, 3] define functional dependencies using the concept
of tree homomorphism. Wang [16] compared different functional dependency
definitions for XML and proposed a new definition of XML FD, which unifies
and generalizes the surveyed XML FDs. All these XML FD definitions are
based upon path expressions created from DTDs or XML Schema definitions.

Szabé and Benczur [12] define the functional dependency concept on gen-
eral regular languages, which is applicable to XML. They consider an XML
document as a set of text fragments, each fragment being a string of symbols
and the types of these strings are sentences of a regular language.

Yu and Jagadish [19] found that the tree tuples model of Arenas and
Libkin [1] cannot handle set elements. They extend the tree tuple model as
Generalized Tree Tuple (GTT) by incorporating set element type into the
XML FD specification.

In [8] and its extended version [7], we propose a framework to mine FDs
from an XML database; it is based on the notions of Generalized Tree Tuple,
XML functional dependency and XML key notion as introduced by [19]. The
formal context for a tuple class or the whole XML document is constructed
from the flat representation of the generalized tree tuple. Non-leaf and leaf
level elements (or attributes) and corresponding values are inserted in the for-
mal context, then the concept lattice of the XML data is constructed. The
obtained conceptual hierarchy is a useful graphical representation of the ana-
lyzed XML document’s elements and their hierarchy. The software also finds
the keys in the XML document. The set of implications resulted from this
concept lattice will be equivalent to the set of functional dependencies that
hold in the XML database. If the XML data representation is nested, solving
the problem of mining XML FD’s using FCA becomes more complicated and
involves the use of multicontexts, tricontexts and power tricontexts families.

We start by recalling some basic definitions from [19].

Definition 1. (Schema) A schema is defined as a set S = (E,T,r), where:



TRIADIC APPROACH TO CONCEPTUAL DESIGN OF XML DATA 83

e F is a finite set of element labels;

e T is a finite set of element types, and each e € E is associated with a
T €T, written as (e : 7), T has the next form:
T = str | int | float | SetOf 7| Red[ey : T1,...,€n : Tn);

o r € FE is the label of the root element, whose associated element type
can not be Set0f .

This definition contains some basic constructs in XML Scheme [15]. The
types str,int and float are system defined simple types and Recd indicate
complex scheme elements (elements with children elements). Keyword SetOf is
used to indicate set schema elements (elements that can have multiple match-
ing data elements sharing the same parent in the data). We will treat at-
tributes and elements in the same way, with a reserved ”@” symbol before
attributes.

CustOrder

Customers[1] Customers[32]

CustomerlD CompanyName Address City  PostalCode Country  Phone Orders[2] " Orders[11]
=ALFKI =Alfreds Obere Str.57 =Berlin =12200  =Germany =030-0074321 AN
Futterkiste

OrderlD G OrderDat OrderDetails[3] o ils[10]
=10692 =ALFKI =1997-10-03T00:
00:00+03:00 )

OrderlD ProductID UnitPrice Quantity ProductlD1 ProductName CategorylD
=10692 =63 =43.9000 =20 =63 =Vegie-spread =2

FIGURE 1. Example Tree

Example 1. The scheme Soyst0rder 0f XML document from Figure 1 is:

CustOrder:Rcd
Customers:Set0f Rcd
CustomerID: str
CompanyName: str
Address: str
City: str
Country: str
Phone: str
Orders: Set0f Rcd
OrderID: int
CustomerID: str



84 CHRISTIAN SACAREA AND VIORICA VARGA

OrderDate: str
OrderDetails: Set0f Rcd
OrderID: int
ProductID: int
UnitPrice: float
Quantity: float
ProductName: str
CategoryID: int
A schema element e, can be identified through a path expression, path(ey) =
/ei/ea/.../ex, where e = r, and e; is associated with type 7; ::= Red [..., €41 :
Tit+1,...| for all ¢ € [1,k —1]. A path is repeatable, if ej is a set element. We
adopt XPath steps ”.” (self) and ”..” (parent) to form a relative path given
an anchor path.

Definition 2. (Data tree) An XML database is defined to be a rooted labeled
tree T = (N, P,V,n,), where:

e N is a set of labeled data nodes, each n € N has a label e and a node
key that uniquely identifies it in T';

e n, € N 1is the root node;

e P is a set of parent-child edges, there is exactly one p = (n’,n) in P for
each n € N (except n,), where n’ € N,n # n',n’ is called the parent
node, n is called the child node;

e V is a set of value assignments, there is exactly one v = (n,s) inV for
each leaf node n € N, where s is a value of simple type.

We assign a node key, referred to as Qkey, to each data node in the data
tree in a pre-order traversal. A data element ny is a descendant of another data
element n; if there exists a series of data elements n;, such that (n;,n;+1) € P
for all i € [1, k—1]. Data element nj can be addressed using a path expression,
path(ng) = /e1/ ... ek, where e; is the label of n; for each i € [1, k], n1 = n,,
and (ng,nj+1) € P for all i € [1,k — 1].

A data element ny is called repeatable if e}, corresponds to a set element
in the schema. Element ny is called a direct descendant of element n,, if ny
is a descendant of ng, path(ng) = ... /es/e1/.../ex—1/ex, and e; is not a set
element for any i € [1,k — 1].

In considering data redundancy, it is important to determine the equality
between the ”values” associated with two data elements, instead of comparing
their ”identities” which are represented by @key. So, we have:

Definition 3. (Element-value equality) Two data elementsny of Ty = (N1, Py,
Vi,nr1) and ng of Ty = (Na, P2, Va,npa) are element-value equal (written as
N1 =ep N2) if and only if:



TRIADIC APPROACH TO CONCEPTUAL DESIGN OF XML DATA 85

e n1 and no both exist and have the same label;

e There exists a set M, such that for every pair (n,n}) € M, n| =, nb,
where n,ny are children elements of ny,na, respectively. Every child
element of n1 or ny appears in exactly one pair in M.

e (n1,s) € V1 if and only if (na, s) € Va,where s is a simple value.

Definition 4. (Path-value equality) Two data element paths p1 on T} =
(N1, P1,V1,n01) and p2 on Ty = (Na, Po, Vo, ny2) are path-value equal (written
as Th.p1 =pv T2.p2) if and only if there is a set M’ of matching pairs where
e For each pair m' = (ny,ng) in M’, ny € N1, na € Na, path(ny) = p1,
path(ng) = p2, and Ny =¢, no;
e All data elements with path p1 in T1 and path ps in Ty participate in
M', and each such data element participates in only one such pair.

The definition of functional dependency in XML data needs the definition
of so called Generalized Tree Tuple.

Definition 5. (Generalized tree tuple) A generalized tree tuple of data tree
T = (N,P,V,n,), with regard to a particular data element n, (called pivot
node), is a tree tgp = (N, PtV n,), where:

N' C N is the set of nodes, n, € Nt ;

Pt C P is the set of parent-child edges;

L]
o V! CV is the set of value assignments;
e n, is the same root node in both tzp and T ;

n € N if and only if: 1) n is a descendant or ancestor of ny, in T, or
2) n is a non-repeatable direct descendant of an ancestor of n, in T ;
(n1,n2) € Pt if and only if n1 € Nt |, ng € Nt (ny,n2) € P;

e (n,s) € V' if and only if n € Nt, (n,s) € V.

A generalized tree tuple is a data tree projected from the original data tree.
It has an extra parameter called a pivot node. In contrast with the notion of
a tree tuple defined in [1], which separate sibling nodes with the same path
at all hierarchy levels, the generalized tree tuple separate sibling nodes with
the same path above the pivot node. An example of a generalized tree tuple
is given in Figure 2. Based on the pivot node, generalized tree tuples can be
categorized into tuple classes:

Definition 6. (Tuple class) A tuple class C;;F of the data tree T is the set of

all generalized tree tuples tg,
path.

Definition 7. (XML FD) An XML FD is a triple (C,, LHS, RHS), (LHS for
Left Hand Side part of FD and RH for Right Hand Side) written as LHS —

where path(n) = p. Path p is called the pivot



86 CHRISTIAN SACAREA AND VIORICA VARGA

CustOrder

Customers[1]

CustomerlD CompanyName Address City  PostalCode Country  Phone Orders[2]
=ALFKI =Alfreds =Obere Str. 57 =Berlin =12209 =Germany =030-0074321 /N
Futterkiste

OrderlD CustomerlD OrderDate OrderDetails[3]
=10692 =ALFKI =1997-10-03T00: N
00:00+03:00

OrderiD ProductiD UnitPrice Quantity ProductiD1 ProductName CategorylD
=10692 =63 =43.9000 =20 =63 =Vegie-spread =2

FIGURE 2. Example tree tuple

RHS w.r.t. Cp, where C), denotes a tuple class, LHS is a set of paths (P} ,
i = [1,n]) relative to p, and RHS is a single path (P,) relative to p.

An XML FD holds on a data tree T (or T satisfies an XML FD) if and
only if for any two generalized tree tuples t1,t2 € C),

-diel,n], t1.P; =1 orty.Py =1, or

- IfVZ S [1,%}, t1.P; =pv to. Py , then t1.P; %J_,tg.PT %L,tl.Pr =pv to.Py.
A null value, L, results from a path that matches no node in the tuple, and
=pv 15 the path-value equality defined in Definition 4.

Example 2. (XML FD) In our running example whenever two products agree
on ProductID values, they have the same ProductName. This can be formu-
lated as follows:

{./ProductID} — ./ProductName w.r.t CorderDetails

Another example is:

{./ProductID} — ./CategoryID w.r.t CorderDetails

In our approach we find the XML keys of a given XML document, so we
need the next definition:

Definition 8. (XML key) An XML Key of a data tree T is a pair (Cp, LHS),
where T satisfies the XML FD (Cy,, LHS,./Qkey).

Example 3. We have the XML FD: (Corgers,./OrderID,./@Qkey), which
implies that (Corders, ./OrderID) is an XML key.

Tuple classes with repeatable pivot paths are called essential tuple classes.

Definition 9. (Interesting XML FD) An XML FD (C,, LHS, RHS) is inter-
esting if it satisfies the following conditions:
e RHS ¢ LHS;



TRIADIC APPROACH TO CONCEPTUAL DESIGN OF XML DATA 87

OrderDetails/UnitPrice
OrderDetails/CategorylD p

COrderDetails/ProductMame
CrderDetails/ProductiD

Orders/CustomeriD
Customers/Phone
Customers/Address
Customers/Companylame
Customers/CustomerlD
Customers/Customers@key

OrderDetails/Crder|D
Orders/OrderiD
. -| Orders/Orders@key

OrderDetails/OrderDetalls @key

FiGUuRrE 3. Concept Lattice of functional dependencies’ Formal
Context for tuple class Coystomers

e (), is an essential tuple class;
e RHS matches to descendent(s) of the pivot node.

Definition 10. (XML data redundancy) A data tree T' contains a redundancy
if and only if T' satisfies an interesting XML FD (C,, LHS, RHS), but does
not satisfy the XML Key (C,, LHS).

As pointed out by [19], the hierarchical representation of XML data avoids
many redundancies compared with the flat representation of XML data. Hence,
we can separate individual relations like Rouystomerss BOrders OF REitm, RActor
as in Tables 3 and 4. There are two types of relevant XML functional depen-
dencies. The intra-relational XML FD’s are the XML FD’s whose LHS and
RHS paths are in the same relation. Hence, an intrarelational FD is one that
involves a single relation. As highlighted by [19], most of the interesting FD’s
in XML datasets are not intra-relational., i.e., they do not contain only LHS



88 CHRISTIAN SACAREA AND VIORICA VARGA

or RHS paths within the same relation. Consider the XML data set in Figure
6. Then, intra-relational FD’s are SName — Founded, SName — film, and
film/Title, film/Year — film/Director, film/actor in Rgiydio-

3. FCA GROUNDED DISCOVERY OF INTRA-RELATIONAL FUNCTIONAL
DEPENDENCIES IN XML DATA

In order to mine intra-relational functional dependencies using FCA, we
can use the same procedure as in the flat representation of XML datasets.
This algorithm is presented in detail in [8] and [7], in the following we give
just a sketch of how it is done.

Consider, the tuple class Coystomers- First, we construct the formal context
of functional dependencies for XML data, see [7]. The concept lattice of this
context is represented in Figure 3. The concept lattice displays also the hierar-
chy of the analyzed data. For instance, the node labeled Customers/Country
is on a higher level than the node labeled Customers/City. The Customers
node with six attributes is a subconcept of the concept labeled Customers/Clity.
In our XML data, every customer has different name, address, phone number,
so these attributes appear in one concept node and imply each other.

We can also observe, that the information about Products is displayed on
the other side of the lattice. Products are in many-to-many relationships with
Orders, linked by OrderDetail in this case. The specially designed software
FCAMineXFD mines the functional dependencies. A part of these XML FD-s
are shown in Figure 4.

Given the set of dependencies discovered by this tool, we adopt the nor-
malization algorithm of [19] to convert one XML schema into a correct one.
The resulting scheme is shown in Figure 5.

4. MINING INTER-RELATIONAL FUNCTIONAL DEPENDENCIES IN XML
DAra

XML data, due to its specificity, has two different representations: a flat
and hierarchical (non-flat) representation. XML elements may be simple ele-
ments but they also may nest other elements. Consider the XML document
from Figure 6. It displays information extracted from a movie database con-
cerning film studios, films, actors, etc.

The XML schema notation (XSN) allows to specify sequences and choices
of elements. The scheme Sysoviespp of XML document in XSN from Figure 6
is given by:

MoviesDB (studio*)
studio (SName, Founded, filmx)
film (Title, Year, Director, actorx)



TRIADIC APPROACH TO CONCEPTUAL DESIGN OF XML DATA 89

- B

o2 Implications =NRN X L

Customers/City —>» Customers/Country

OrderDetails/ProductiD > OrderDetails/ProductName
OrderDetails/ProductlD -> OrderDetails/CategorylD

OrderDetails/ProductName > OrderDetails/ProductiD
OrderDetails/ProductName -> OrderDetails/CategorylD

CustomersfCustomers@key -» Customers/CustomerlD
Customers/Customers@key > Customers/CompanyName
CustomersfCustomers@key -» Customers/Address
Customers/Customers@key > Customers/Phone
CustomersfCustomers@key -» Orders/CustomerlD
Customers/Customers@key > Customers/City
CustomersfCustomers@key -» Customers/Country

CustomersfCustomeriD ->» Customers/Customers@key
Customers/CustomerlD > CustomersfCompanyName
CustomersfCustomerlD > Customers/Address
Customers/CustomeriD == Customers/Phone
CustomersfCustomerlD -> Orders/CustomerlD
Customers/CustomerlD -> Customers/City
Customers/CustomerlD -» Customers/Country

m

CustomersfCompanyName ->» Customers/Customers@key
Customers/CompanyMName —> Customers/CustomerlD
Customers/CompanyName -> Customers/Address
Customers/CompanyMName -> Customers/Phone
Customers/CompanyName -> Orders/CustomeriD
Customers/CompanyMName -> Customers/City
Customers/CompanyName -> Customers/Country

FIGURE 4. Functional dependencies in tuple class Coystomers

TABLE 1. Table R, o0t

@key | parent
1 il

TABLE 2. Table Rsiudio

@key | parent SName Founded
10 1 Columbia Pictures 1924
50 1 Warner Bros. Pictures 1923

actor (AName, Gender, Born, BornY?7)

In the flat representation, the data tree is represented as a single relational
table. The hierarchical representation is more compact. The original XML
tree is represented by a set of nested relations based on the XML schema, each
relation R, corresponds to an essential tuple class C) (see [19]). In our movie



90 CHRISTIAN SACAREA AND VIORICA VARGA
File  View Help
Select XML Path | #ML Schema Nommalization
- H_""t =8 Root -
[=I- Customers [=I- Customers
I CustomerlD CustomerlD 1
i~ ComparyName i~ CompanyName |
- Address i Address |
- Courtry i Phone
..... Phone El-O_rders - |
E|-O:rder5 g----OrderID 1 I
OrderlD OrderDate
i CustomerlD [=I- OrderDetails
- OrderDate - Product/D I
=3 OrderDetails i Unit Price
i-Ordefl || 8 e Quantity
----- Product|D (- CityCountry
..... UnitPrice Gw
..... Quantity i Country
----- Product Mame =3 F‘_roduct
..... CategorylD i~ ProductID
----- Product Mame
..... CategorylD
4 1 3 ;
FIGURE 5. Correct XML Scheme
TABLE 3. Table Rp;m,

@key | parent Title Year Director
13 10 Da Vinci Code 2006 Ron Howard
30 10 Captain Phillips 2013 | Paul Greengrass
55 50 Extremely Loud & Incredibly Close | 2011 | Stephen Daldry
80 50 Gravity 2013 | Alphonso Cuarén

TABLE 4. Table R actor
@key | parent AName Gender | Born | BornYear
20 13 Tom Hanks M USA 1956
25 13 Audrey Tautou F France il
35 30 Tom Hanks M USA 1956
40 30 Barkhad Abdi M Somalia 1
60 55 Thomas Horn M USA 1
65 55 Tom Hanks M USA 1956
70 55 Sandra Bullock F USA 1
85 80 Sandra Bullock F USA 1964




TRIADIC APPROACH TO CONCEPTUAL DESIGN OF XML DATA 91

MoviesDB[1]

studio[10]

SName[11] Founded[12] film[13] film[30:

=Columbia  =1924
Ficures /
itle[31] Year[32] Director[33]= actor(35]  actor[40]

actor[20]  actor[25]

Title[14]=  Year[15]= Director[18)= =Captain 2013 Paul Greengrass
DaVind 2006 Ron Howard Phillips
Code

ANzme[21]=  Gender[22]  Born[23] Born¥[24] AN 9[25 Gender[27]  Born[ ANsme[36]  Gender[37]  Bon [33 Barn¥[38] ANsms[41E  Gender[42]
Tom Hanks =1956 =Aud = =France =TomHanks =M =1956 Barkhad =Sa msl
Abdi

FIGURE 6. Movie Tree

dataset example, the hierarchical representation of the XML data from Figure
6 is given in the nested tables 1 - 4.

Every nested table is considered as a many-valued context. Through con-
ceptual scaling, we obtain a multi-context wherefrom we can construct a tri-
context.

In the following, we briefly recall some definitions.

Definition 11. A triadic formal context (shortly tricontext) is a quadruple
K := (K1, K2, K3,Y) where K;, Ko and K3 are sets, and Y is a ternary
relation between them, i. e., Y C K7 x K9 x K3. The elements of K7, Ko and
K3 are called (formal) objects, attributes, and conditions, respectively. An
element (g,m,b) € Y is read object g has attribute m under condition b.

Definition 12 ([17]). A multicontext of signature o: P — I?, where I and
P are non-empty sets, is be defined as a pair (S, Rp) consisting of a family
St := (Si)ier of sets and a family Rp := (Rp)pcp of binary relations with
R, C S; x S if op = (i,7). A multicontext K := (Sr, Rp) can be understood
as a network of formal contexts K, := (S;, Sj, R,), with p € P and op = (i, 7).
According to this understanding, the conceptual structure of a multicontext
K is constituted by the concept lattices of its components KK,,.

In our example, every many-valued context representing a nested table
of the XML dataset is nominally scaled. We obtain four contexts, which
alltogether form the multicontext Kasopie-

Example 4. The conceptual structure of the Movie multicontext is displayed
in the Figures 7-10.



92 CHRISTIAN SACAREA AND VIORICA VARGA

(]

FIGURE 7. Ryoot

Founded: 1924 Founded: 1923
SNAME: Columbia SNAME: Warner Bros.

FIGURE 8. Rgudio

Director: Alphonso Cuaron -
ebiiod . Director: Paul Greenglass
Title:Gravity _ [parent50]-"[¥:2013] ™| parent:10] Title: Cpt. Phillips L

Director: Stephen Daldry.
Y:2011 -
Title:Extremely Loud

_.-- | Director: Ron Howard
¥:2006
Title:Da Vinci Code

FIGURE 9. Ryiim

For a multicontext K := (S7, Rp) of signature o: P — I?, let I := {i €
I|op=(i,j) for some p € P} and Iy :={j € [ | op = (4,) for some p € P}.



TRIADIC APPROACH TO CONCEPTUAL DESIGN OF XML DATA 93

AName:Sandra Bullock |
AMame:Thomas Horn

Born:France T

AName:Audrey Tautou |
Born:1964|
parent:80

Born:1956
AName:Tom Hanks

“e

FIGURE 10. Rgactor

Let Gk := Uz‘eh S; and Mg = Ujg2 S;. We can define a triadic context
(for short tri-context) by Tx := (Gk, Mk, P, Yx) with Yk = {(g9,m,p) €
Gk x Mg x P | (g,m) € R,}. The conceptual structure of Tk can be seen as
a natural triadic extension of the concept lattices B(K)).

Definition 13. Given an XML database, the above construction gives us the
canonical translation of the XML database as a formal tricontext.

Example 5. The triadic context generated by the Mowvies multicontext has
as object set G := {1, 10, 50, 13, 30, 55, 80, 20, 25, 35, 40, 60, 65, 70, 85}, the at-
tribute set is obtained by taking all nominally scaled attributes of the four
many-valued contexts 1 - 4, and the condition set contains the labels of the
four hierarchical levels from T to Actor.

Definition 14. For {i,j,k} = {1,2,3} with j < k and for X C K, and
Z C Kj x Ky, the (—)®-derivation operators are defined by

X = X0 = {(aj,a) € K; x Ky | (ai,a5,a,) € Y for all a; € X},

Z = ZW = {a; € K; | (ai,aj,a;) € Y for all (aj,az) € Z}.



94 CHRISTIAN SACAREA AND VIORICA VARGA

These derivation operators correspond to the derivation operators of the
dyadic contexts defined by K() := (K, Kj x Ky, Y(Z)), where

alY(l)(az, as) < aQY(2) (a1,a3) < (13Y(3) (a1,a3) < (a1,a2,a3) €Y.

Definition 15. For {i,j,k} = {1,2,3} and for X; C K;, X; C Kj and Aj, C
K}, the (—)4%-derivation operators are defined by

X;— XiAk ={aj € Kj | (ai,aj,a;) € Y for all (a;,ar) € X; x Ag},
X; X;"“ ={a; € K; | (a;,aj,ax) € Y for all (a;,ar) € X; x Ag}.

These derivation operators correspond to the derivation operators of the
dyadic contexts defined by Kfjk = (K, K, Y;{k ) where

(ai,a;) € ijk & (a;,aj,a;) € Y for all a, € Ag.

Example 6. In the tricontext Mouwies, if g is an object, i.e., is a key of a node
in the XML dataset about movies, then i =1,7 = 2,k = 3 and g(l) is the tree
tuple having as root node the parent of ¢, while ¢(53) is the generalized tree
tuple having g as a pivot element (see Definition 5).

This allows the algorithmic discovery of all generalized tree tuples with a
given pivot element. These generalized tree tuples are playing an essential role
in defining inter-relational functional dependencies as defined in [19]

If e is an element name, let A be the set of all nodes in the XML data set,
having as label the element name e. Then A(3) is the tuple class of e (see
Definition 6).

We have represented all important elements from an XML dataset using
Triadic FCA. Discovering inter-relational functional dependencies can now be
done using the algorithms developed for mining triadic implications.

Definition 16. ([5]) If K := (G, M, B,Y) is a tricontext, R,S C M,C C B,

an expression of the form R S Sis called conditional attribute implication and
is read as R implies S under all conditions from C. A conditional attribute

implication R S S holds in K if and only if the following is satisfied:
For each condition ¢ € C| it holds that if an object g € G has all the
attributes in R then it also has all the attributes in S.

Definition 17. Let K be a the tricontext resulting from the canonical transla-
tion of an XML database. Let C), be a tuple class. Then, the formal tricontext
of functional dependencies with respect to Cp is defined as XMLFD(K) :=
(Cp x Cp, M, P,Y'), where M is the set of element names, P the set of nested
tables, and ((g,h),e,p) € Y if and only if the path values of g and h are equal
with regard to path-value equality from Definition 4.



TRIADIC APPROACH TO CONCEPTUAL DESIGN OF XML DATA 95

Proposition 1. The inter-relational functional dependencies of an XML data-
base are exactly the conditional attribute implications in XMLFD(K).

5. CONCLUSION AND FURTHER RESEARCH

As far as described above, FCA proves to be a valuable tool for the con-
ceptual design of XML data. XML data can be represented in hierarchical
or flat form. In a recent work we give an FCA based approach for mining
functional dependencies for flat XML data representation. In this paper we
define a triadic FCA approach for a conceptual model of hierarchical XML
data representation. The formal tricontext of functional dependencies with
respect to a tuple class is given. This triadic approach is applicable in discov-
ering inter-relational functional dependencies using algorithms developed for
mining triadic implications.

As future work we propose to develop a software which will build the
tricontext of an XML tree. The conditional attribute implications will give
the functional dependencies from XML tree.

REFERENCES

[1] M. Arenas, L. Libkin: A normal form for XML documents. TODS 29(1), pp. 195-232
(2004)

[2] S. Hartmann, S. Link: More functional dependencies for XML. In: Proc. ADBIS, pp.
355-369 (2003)

[3] S. Hartmann, S. Link, T. Trinh: Solving the implication problem for XML functional
dependencies with properties. In: Logic, Language, Information and Computation, 17th
International Workshop, WoLLIC, pp. 161-175 (2010)

[4] B. Ganter, R., Wille: Formal Concept Analysis. Mathematical Foundations. Springer,
Berlin-Heidelberg-New York(1999)

[5] B. Ganter, S. Obiedkov, Implications in Triadic Formal Contexts, in ICCS 2004, LNAI
3127, pp. 186-195, Springer Verlag, 2004.

[6] J. Hereth: Relational Scaling and Databases. Proceedings of the 10th International
Conference on Conceptual Structures: Integration and Interfaces LNCS 2393, Springer
Verlag, pp. 62-76 (2002)

[7] K.T. Janosi-Rancz, V. Varga.: XML Schema Refinement Through Formal Concept Anal-
ysis, Studia Univ. Babes-Bolyai Cluj-Napoca, Informatica, vol. LVII, No. 3, pp. 49-64
(2012)

[8] K.T. Janosi-Rancz, V. Varga, T. Nagy: Detecting XML Functional Dependencies
through Formal Concept Analysis, 14th East European Conference on Advances in
Databases and Information Systems (ADBIS), Novi Sad, Serbia, LNCS 6295, pp. 595-
598 (2010).

[9] K.T. Janosi-Rancz, V. Varga: A Method for Mining Functional Dependecies in Rela-
tional Database Design Using FCA, Studia Univ. Babeg-Bolyai, Informatica, Vol. LIII,
Nr. 1 (2008), pp. 17-28.



96

[10]

[11]

[12]

[13]

[18]

[19]

CHRISTIAN SACAREA AND VIORICA VARGA

K.T. Janosi-Rancz, V. Varga, J. Puskas: A Software Tool for Data Analysis Based
on Formal Concept Analysis, Studia Univ. Babes-Bolyai, Informatica, Vol. LIII, Nr. 2
(2008), pp. 67-78.

F. Lehmann, R. Wille: A Triadic Approach to Formal Concept Analysis, in: Ellis,
G., Levinson, R., Rich, W., Sowa, J. F. (eds.), Conceptual Structures: Applications,
Implementation and Theory, vol. 954 of Lecture Notes in Artificial Intelligence, Springer
Verlag, (1995), pp. 32-43

Gy. Szabd, A. Benczir.: Functional Dependencies on Extended Relations Defined by
Regular Languages, Annals of Mathematics and Artificial Intelligence, May 2013, pp.
1-39.

V. Varga, K.T. Janosi-Rancz, C. Sacarea, K. Csioban: XML Design: an FCA Point of
View, Proceedings of 2010 IEEE International Conference on Automation, Quality and
Testing, Robotics, Theta 17th edition, Cluj Napoca, pp. 165-170 (2010)

M. W. Vincent, J. Liu, C. Liu: Strong functional dependencies and their application to
normal forms in XML, ACM TODS, 29(3), pp. 445-462 (2004)

W3C. XML Schema, http://www.w3.org/XML/Schema (2014)

| J. Wang: A comparative study of functional dependencies for XML. In: APWeb, pp.

308-319 (2005)

R. Wille: Conceptual Structures of Multicontezts. In Conceptual Structures: Knowledge
Representation as Interlingua Lecture Notes in Computer Science Volume 1115, (1996),
pp 23-39.

S.A. Yevtushenko: System of data analysis ”Concept Explorer”. (In Russian). Proceed-
ings of the 7th national conference on Artificial Intelligence KII, Russia, pp. 127-134
(2000).

C. Yu, H. V. Jagadish: XML schema refinement through redundancy detection and
normalization, VLDB J. 17(2), pp. 203-223 (2008)

BABES-BorLyar UNIVERSITY, CLUJ, ROMANIA
E-mail address: csacarea@math.ubbcluj.ro

BABESs-BoLyal UNIVERSITY, CLUJ, ROMANIA
E-mail address: ivarga@cs.ubbcluj.ro





