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MATCHING APICTORIAL PUZZLE PIECES USING DEEP

LEARNING

RALUCA-DIANA CHIŞ

Abstract. Finding matches between puzzle pieces is a difficult problem
relevant to applications that involve restoring broken objects. The main
difficulty comes from the similarity of the puzzle pieces and the very small
difference between a pair of pieces that almost match and one that does.
The proposed solution is based on deep learning models and has two steps:
firstly, the pieces are segmented from images with a U-Net model; then,
matches are found with a Siamese Neural Network. To reach our goal, we
created our own dataset, containing 462 images and just as many masks.
With these masks, we built 3318 pairs of images, half of them representing
pieces that fit together and half that do not. Our most relevant result is
estimating correctly for 290 out of 332 pairs whether they match.

1. Introduction

The aim of this paper is to present the design and implementation of a
solution for the complicated problem of matching apictorial puzzle pieces. The
term apictorial is used in this work with the meaning that the pairs of puzzle
pieces are found only by looking at the shape of the pieces and neglecting the
model on top of them, as we aim for a robust solution, that could suit pieces
with any type of patterns. This problem is a complicated one, due to the
fact that the puzzle pieces are very resembling and it is hard to differentiate
between them. This requires a very well-defined puzzle piece edge extraction,
that does not compromise their shapes at all, according to [5]. Moreover, the
search space is considerably large, considering that for each side of a piece,
the program has to compute as many comparisons as images in the dataset.
Normally, the number of comparisons should have been multiplied by 4 (the
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6 RALUCA-DIANA CHIŞ

number of possible rotations of a piece), but for this research it was considered
that all the pieces are oriented as in their final position from the puzzle.

This research topic revolves around finding pairs of puzzle pieces, that com-
plement each other perfectly. This has great applications in the reassembly
process of fragmented objects, which is a very time-consuming task for hu-
mans and of high interest in archaeology, according to [17] and [15]. The main
difference between solving a puzzle and restoring an object is that the former
can be treated as a two-dimensional problem. Willis et al. [20] associate the
reconstruction of ancient artefacts with solving a real-world geometric puzzle.
In the same paper, the authors present puzzle piece matching as a more regular
version of the problem of artefact piece matching, since puzzles have a more
predictable shape and were not exposed to erosion prior to the reconstruction.
Besides this, it is mentioned that the edges of jigsaw pieces are more simple
to separate, because the corners of each side are easily identifiable.

The main contribution of the current study refers to the creation of an au-
tomated pipeline designed for pairwise matching of puzzle pieces. The process
is done in two steps. Initially, images of puzzle pieces are segmented to extract
the shape of each piece. For training this model, an original dataset was cre-
ated, consisting of images of real puzzle pieces and corresponding masks. The
second step of the pipeline involves the creation of a deep learning model for
matching pairs of puzzle pieces according to their shape, which to our knowl-
edge has never been tried before. A Siamese neural network performs edge
matching for all segmented pieces and the matching score is computed for a
series of generated pairs of puzzle pieces. Our most relevant result gives an ac-
curacy of 87.34% for the edge-matching task on the test set, which means that
for the majority of the puzzle pairs, the model managed to correctly predict
if they match or not.

The current paper is structured in five sections as follows. The second
section details the existing literature in the field. Section 3 presents the devel-
opment of the segmentation and the edge-matching model. The fourth section
describes the environment in which the experiments were carried out, what
results we achieved and how they compare to the outcomes of other papers.
Finally, conclusions are drawn and possibilities for improvement in the future
are mentioned.

2. Related work

In this section we will review the most recent research papers on techniques
for finding matches between different pieces, using images of them. Since we
have established that our aim is not to solve a puzzle, we will only briefly
address the parts of the papers related to generating puzzle solutions. The
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methods presented in what follows expose both two and three-dimensional
approaches and are focused on image processing techniques. Some of them
are not completely automatic and require a specialist for constant feedback.
One can easily notice a common pattern for all papers exposed here. They
all follow a similar structure: photos or scans of the pieces (puzzle pieces or
other types) are taken, followed by instance segmentation or contour curve
extraction, and using the resulting features, edge matching between pieces is
performed. The results of the papers presented below will be presented in
Section 4.5 and they will be compared to the ones of the current research.

As far as the data used in the most relevant papers on edge-matching are
concerned, they consist of images of torn documents [2], patches of papyrus
or ostraca fragments images [18] and [14], images of unconventional puzzle
pieces [6] and [7], 3D scans of broken objects [1], and synthetically generated
three-dimensional objects [5]. Regarding the segmentation task, the authors
propose methods that differ slightly from each other. Grim et al. [5] use
Bezier curves with selected control points, while in [6] images were segmented
using active contours [9] and smoothed using a näıve spline algorithm. In [7]
the edge curvature is computed with integral invariants and Alagrami et al.
[1] proposed a graph-based method for extracting the breaking curves of an
object, with which the sides of the object were identified.

For the task of matching the edges, the approach proposed in [8] and in
[1] uses the Iterative Closest Points (ICP) algorithm. Authors of [6] and [5]
divided each boundary curve into a set of bivertex axes with the extended
Euclidean signature method. All sets of axes were compared to each other
and a confidence score on their matching was computed. In [2] the features
lists for each corner detected were joined with the Minkowski Sum.

In a recent survey addressing the solving of Jigsaw puzzles [13], emphasis is
placed on the utilization of deep learning techniques exclusively for method-
ologies employing square or rectangular patches extracted from images. This
particular perspective proves valuable for discerning the relationship between
two fragments belonging to the same object [18] or predicting the permuta-
tion of image patches to compose a comprehensive image [11]. However, our
objective diverges from this approach. Our model seeks puzzle pieces that
complement each other in shape rather than similarity, as the synergy of two
matching puzzle pieces lies in their complementarity. To our knowledge, there
are no previous experiments applying a Siamese network for comparing the
shapes of two puzzle pieces.

We focus specifically on the shape of the pieces in the images. In the con-
text of patches, continuity in terms of the patterns in the image is sought.
This represents the main difference between our edge-matching model and the
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Siamese neural network from [14]. Moreover, in the architecture proposed by
Ostertag et al., the two inputted images are passed through four convolutional
blocks and then 4 patches with a width of 10 pixels are extracted from the fea-
ture map of each branch. Each patch is subtracted from its opposite belonging
to the second branch, the results are concatenated and the output consists of
a 5 probabilities linear vector, each of them representing the similarity of each
side. The disadvantage of this method that we overcome with our proposed
architecture is that by creating those 10-pixel wide patches the overall context
is lost and important chunks might be missing for some puzzle pieces.

3. Methodology

The manner in which we have approached the problem of matching puzzle
pieces from images consists of two phases: the development of a model for
segmenting puzzle pieces from images and the development of a deep-learning
model for finding matching pairs of pieces.

3.1. Segmentation. The model for image segmentation has a very large in-
fluence on the success of the attempted approach, as the predictions generated
by it will be the network input for edge-matching. The higher the quality of
the segmentations, the better the piece-matching results will be. In particu-
lar, the edge of the pieces is preferable to be as well defined as possible, but
the difficulty arises when the shadow of a piece appears in the image, which
misleads the model about its edge.

We have decided to use for this task the model called U-NET, due to its
effectiveness in capturing fine-grained details. The authors of this model [19]
prove the usefulness and the very good performance of their network archi-
tecture, by applying it to three segmentation tasks: segmentation of neuronal
structures in electron microscopic recordings, segmentation of cells on a poly-
acrylamide substrate recorded by phase contrast microscopy, and HeLa cells
on a flat glass recorded by differential interference contrast microscopy. The
results of the U-NET outperform the state-of-the-art (up until 2015) on these
tasks.

This U-NET architecture is based on using fewer images than usual for
training neural networks while exploiting the given images more efficiently.
The authors use data augmentation techniques to achieve this performance,
by elastically deforming images. In this way, the model can learn invariance to
different types of deformations, which in their case of biomedical segmentation
was very useful, because deformation in tissue is very common. For our case,
data augmentation is also useful because images of puzzle pieces can vary
greatly in terms of object position, brightness, colour, and so on.
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The architecture of the network comprises a downsampling of the feature
map, followed by an upsampling of these features. The model encodes an
image, extracts features using multiple convolutional layers. Then, the decoder
upsamples the features using the transpose convolution and concatenates them
using a process, called skip connection. Through this process, the model skips
some of the network layers and feeds the output of one layer as the input to
the next layers. The output of the network is a segmentation mask. The pixels
of this mask have values ranging from 0 to 1 and for increasing the chances of
the edge-matching model, a threshold of value 0.4 was applied, meaning that
all pixels under this value were converted to 0 and 1, respectively. The value
of the threshold was set experimentally.

3.2. Edge matching. What comes after segmenting the puzzle pieces is find-
ing pairs that match, depending on the shape of their sides. For this matter,
we chose a deep-learning approach, following a Siamese architecture. The idea
of this architecture dates back to 1993 [3], when a group of researchers pro-
posed the use of two identical neural networks merged at the output. Their
goal was to check if two signatures written on a touch-sensitive pad are iden-
tical. They obtained impressive results on test data, the model being able to
detect a real signature in 95.5% of the cases and forgeries in 80%.

Siamese networks are used for measuring the similarity or the dissimilarity
between two images, by comparing the feature vectors outputted by the twin
networks. Our architecture is presented in Fig. 1. The network comprises two
identical branches with shared weights, meaning that the parameters (weights
and biases) of these branches are the same. Each branch is made out of three
convolutional blocks. Each of them is composed of 2 convolutional layers with
64, 128, and 256 filters and kernel sizes of 11x11, 5x5, and 3x3 respectively,
one batch normalization layer, one ReLu activation layer, and lastly, a max-
pooling layer, which reduces the image size by 2.

Figure 1. Edge-matching network architecture
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At this point in the network, most of the Siamese architectures propose
computing a loss between the two feature vectors, usually a contrastive loss,
as in [4]. We tried out this method too, but the results were disappointing.
The best model we obtained with this approach was able to make correct es-
timations only in half of the cases. Moreover, the Euclidian distance between
one image and 50 others from the test set, was the same for 25 of them and
equal to 0.26116937. This value for the distance would mean that the images
are compatible, but when we reviewed them, we discovered both suitable im-
ages and completely not suitable ones. These facts led us to the conclusion
that this path cannot be successful, since the model was focusing on finding if
the two input images are similar or not and this was not what we specifically
needed.

Inspired by [18] and [14], we decided to subtract the two feature vectors ele-
ment by element. The result was flattened and we obtained a one-dimensional
feature vector of size 20408. As visible in Fig. 1, the vector is afterwards passed
through a couple of linear transformations. After the first linear transforma-
tion, we tried adding a dropout layer, with a probability of 0.5, to prevent the
model from overfitting. In some situations, this layer helped, but not always,
as we will discuss in the next section. Lastly, the Softmax layer computes the
probability of the two images forming a match or not. Further on, we used
the Cross-Entropy loss from PyTorch [16], to compute the distance between
the probabilities outputted by the model and the true ones.

4. Experimental results

Based on the models presented above, experiments were conducted for both
tasks. In the following, the most relevant experiments will be presented, dis-
cussed and compared, together with the dataset and the methodology used in
their evaluation. The code used for experiments is available here1.

4.1. Data. For this study, a dataset was created taking into account the use of
various puzzle piece sizes, the need for having a minimum of several hundred
images for training, testing and validation, and a reduced difficulty for the
pre-processing and mask generation step. The dataset is available here2.

The first step in creating the dataset was to photograph seven puzzles with
different numbers of pieces and different piece sizes, ranging from 1.6x1.8 cm
to 4.9x4.1 cm. All the pieces had the classic shape of puzzle pieces, namely
four sides, each with an indent or an outdent. The exception was the edge
pieces, which had one or two straight sides. The pieces were placed face
down, on a black background, to have a bigger contrast between the piece

1https://github.com/RalucaChis/PiecePerfect
2https://www.kaggle.com/datasets/ralucachiss/pieceperfect-dataset/



MATCHING APICTORIAL PUZZLE PIECES USING DEEP LEARNING 11

Figure 2. Puzzle piece images preprocessing pipeline: mask generation, mask
resize and crop, mask with reversed colours and an only-edge mask

and the background, which helped enormously the binarization process. The
photographs were taken with an iPhone, version XS, with a focal length of 26
mm, aperture ratio of f/1.8, and image size of 3024x3024. In total, we took
462 pictures, belonging to 7 different puzzles. The quality of the images was
good enough for our task, but only very late in the research a possible problem
in the data collection occurred to us. Since we did not use a fixed setup for
taking the pictures (a camera setup [8] or a photocopier [7]), the distances
between the camera and the pieces may be different by a few centimetres,
thus affecting the ratio between the size of the piece and the image.

To generate the masks, images were first opened in grayscale mode and
then converted into binary images with thresholding, separating foreground
(objects of interest) and background. Experiments revealed that a threshold
value of 140 (with pixels ranging from 0 to 255) was optimal.

The generated masks have white pixels for puzzle pieces (value 1) and black
pixels (value 0) for the background. Since the masks had some black gaps
inside the pieces, we made use of the ”floodFill” method from OpenCV to
fill the gaps. FloodFill is a technique for changing the colour or value of a
connected region of pixels in an image, starting from a seeding point. The
filling process began from the left top corner of the image, by converting to
white the whole background. The colours of the retrieved image were inverted
and then we applied a logical OR operation on the resulting image and the
original one. The obtained masks have very good quality and correspond
completely to the shape of the pieces (Fig. 2).

The obtained dataset consists of 462 pictures of puzzle pieces, suitable for
training a segmentation model. However, the model was limited to identifying
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puzzle pieces without an image and a simple background. Therefore, we gen-
erated five additional variants for each image, randomly selecting backgrounds
from a set of 13 and foregrounds from a set of 19. This augmentation resulted
in a dataset of 2772 images (original 462 + 5*462 augmented), significantly
improving segmentation performance on test images.

The initial images have a size of 3024x3024 pixels. Since working with very
large images is difficult, we chose to resize the images to 256x256 pixels. After
performing several experiments with unsatisfactory numeric results on the
edge-matching model, we found that reducing the background area by cropping
the images improved model performance. For this, we cropped the images,
keeping 5 pixels on each side between the piece and the edge of the image. To
maintain uniform mask sizes without losing quality through resizing, we added
black padding to each side, resulting in images standardized to the largest size
(148x148 pixels). For future reference, we will call this set DS1.

Furthermore, we thought it might help if, when analyzing a pair of masks,
the second image had the colours reversed. In this way, the side of the first
piece would be white, and the outside of the pair side of the second image would
still be white, and thus the model would more easily identify the compatibility
of the two pieces. So we generated a set of images with the colours reversed
(DS2 ). Also, in order to simplify the work of the model, we generated a set
of images containing only the edges of the pieces (DS3 ). To obtain them, we
resized the masks to 135x135 pixels, added black padding to the images on all
sides until we obtained pictures of 148x148 pixels with the piece in the centre,
and then applied a logical XOR operation between the initial mask and the
transformed one. Fig. 2 contains an example mask from each of the three
resulting sets.

For efficient image management, we scanned each puzzle solved and num-
bered each piece. The numbers on each puzzle were manually translated into
a matrix, which we used to create the pairs of pieces. Thus, for each piece
we considered the neighbouring pieces in the 4 directions (top, bottom, left,
right) as compatible, and the neighbours on the diagonal (top-left, top-right,
bottom-left, bottom-right) as incompatible.

We started from the premise that all pieces are oriented in the final position
in the puzzle, so between any two puzzle pieces there are 4 possible matches,
plus the case where they do not match at all. An example of the 4 matching
cases can be seen in Fig. 3.

The compatibility of two pieces is determined by how well two of their sides
complement each other. Thus, to encourage the model to pay more attention
to the edges of the pieces, we chose to train the model with the images cut in
half for all experiments. Following the pre-processing procedures applied to
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Figure 3. Matching Possibilities: 1&3 are top-down matches (the top of a
piece matches the bottom of the other and vice-versa) and 2&4 are left-right
matches.

the masks, in each of them the piece is in the centre of the image, so there is
no risk that a half of the image does not contain any part of the piece. Prior
to cropping, the images were rotated 90◦, 180◦ or 270◦, according to their
match-case, so that the right side of the first image (first from left to right)
matches the left side of the second image. Since we rotated and cropped the
images, the task of differentiating the four types of match is almost impossible,
so we chose to classify the pairs as binary, match or non-match. With this
strategy, we obtained a total of 3318 entries, of which 1618 represent matches
and 1700 non-matches.

4.2. Evaluation methods. In order to evaluate the segmentation model, we
split the image dataset into three sets: for training (70%), validation (20%)
and testing (10%). One of the evaluation metrics used is L1 loss, which is
also known as the absolute error loss. It is defined as the absolute difference
between the predicted and actual values, as follows: L1 = |yactual − ypredicted|.
The mean absolute error (MAE), which is computed as the mean of L1 values,
will be used for evaluating the mean value of pixels, that have not been cor-
rectly predicted (with values from 0 to 1, where 1 states that all pixels have
been wrongly classified and 0 the opposite).

Moreover, the Dice coefficient was used to estimate how well the mask over-
laps the input image. The Dice coefficient is computed as twice the intersection
of the predicted and ground truth masks, divided by the sum of their areas:
Dice coefficient = (2 * Intersection) / (Sum of areas). It takes values in the
range of 0 and 1, where 1 indicates a perfect overlap, while 0 indicates no
overlap.

For the edge-matching task, the main criterion applied for evaluating the
model is the accuracy of the predictions. The pairs discussed in Section 4.1
were divided into three sets: training (70% of them), validation (20%) and
testing (10%). The accuracy of this task is simply computed by dividing the
number of correctly estimated pairs from the test set, by the total number
of pairs. For an improved perspective, we also computed the F1 score. This
evaluation method is computed as a harmonic mean of precision and recall,
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with the following formula: F1 = 2 ∗ (precision ∗ recall)/(precision+ recall).
The F1 score ranges from 0 to 1, where 1 represents the best possible value
and 0 is the worst.

In addition to these classical evaluation methods, we considered it important
to analyze the performance of the model in the context of finding the ideal pair
of a part. We chose from the test set the pieces that had a pair and analysed
the fit between one piece and all the others. If the true match is among the
top 10 pieces with a very high probability of being a match, we will consider
it a success. For future reference, we will call this evaluation top 10.

4.3. Segmentation results. The segmentation part of the problem did not
impose as many difficulties as the edge-matching task, so a small number
of experiments was adequate. After a few tries, we noticed that the model
behaved best when using the Adam optimizer and a batch size of 16. The
difference between using a learning rate of 0.003 and 0.0003 was minimal.
After applying the second value, the mean absolute error (MAE) obtained
was 0.003490, and the Dice coefficient value on average was 0.9751, confirming
that the model learns the proposed task very well.

The results of both experiments are visible in Table 1. A mean value as
high as 0.97 out of 1 for the Dice coefficient suggests that the masks generated
by the segmentation model overlap almost perfectly with the ground truth.
This result is further supported by the very low value achieved for the MAE
score, 0.0034. The progress of the L1 loss during training supports the good
performance of the model (Fig. 4). The values range from 0.0896 to 0.0092
for training and from 0.5906 to 0.0123 for validation. The trainings have been
conducted for 30 epochs, as we noticed that the loss stabilizes and fluctuates
very little after the first 10 epochs.

4.4. Edge matching results. The edge-matching task was difficult, so sev-
eral experiments were needed to come up with at least a satisfactory solution.
Table 2 exposes the numerical results and we are going to detail each of the
experiments in what follows. All experiments were done with a batch size of
value 64, a learning rate of 0.001 and with the Adam optimizer [10]. These
specifications have been established experimentally. The batches are computed
before training and images are randomized. For all experiments, the images
were halved. As we noticed that accuracy and loss stabilize after 30 epochs,
we did all our experiments with this number of epochs. All the experiments
described in the next chapter are done on Google Colaboratory, using GPU
Nvidia T4, with 16 GB.

Inspired by the architecture shown in [18], where the authors present a
model with an accuracy of 79% on matching papyrus fragments, we tried
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Table 1. Experimental results for image segmentation with U-Net.

Dataset Batch Size LR Optimizer MAE Dice coeff.
DS1 16 0.003 Adam 0.004968 0.9649
DS1 16 0.0003 Adam 0.003490 0.9751

Table 2. Experimental results for edge-matching (columns Img1 and Img2
state the dataset used as input for the first and second branches respectively;
Drp stands for Dropout Layer)

Id Img1 Img2 Drp. LR Opt. Acc. % F1 top 10 %
1 DS1 DS1 NO 0.001 Adam 51.2048 0 0
2 DS1 DS1 YES 0.001 Adam 83.4337 82.9721 10.17
3 DS1 DS1 NO 0.001 Adam 84.6385 84.9557 12.34
4 DS1 DS2 YES 0.001 Adam 80.4216 79.4952 17.36
5 DS3 DS3 YES 0.001 Adam 87.3493 85.6164 8.982

flattening the feature vectors outputted by the two identical branches and
only afterwards perform the absolute difference between the two (experiment
with id 1 ). The model performed poorly, predicting that almost all pairs
are not matching, which lead to very low results for all three performance
measures. The behaviour of the model is unexpected and worth investigating
in future.

The second experiment (id 2 ) is based on the architecture described in
Section 3.2, having as input the preprocessed puzzle pieces images, rotated
and cut in half, as described in Section 4.1. Although this approach obtained
very good results on all evaluation methods, it was outperformed with more
than one percent on each metric by the experiment in which we removed the
dropout layer from the neural network (experiment with id 3 ). The reason for
this lies in the fact that the model used had a rather simple design, which was
not prone to overfitting, so the dropout layer could be omitted. This was not
the case for the last two experiments. The fourth experiment performed better
when we used the dropout layer and the same for the fifth. This happened
thanks to the ability of the dropout layer to reduce the sensitivity of a model,
which helped the model focus on the most salient features.

The experiment with id 4 was very similar to the one with id 2, with the
exception that for experiment 4 the second inputted image had its colours
inverted (white became black and vice-versa). While the accuracy and the F1
score value were considerably lower than in the approach with id 3, the model
managed to find the perfect match of a piece among the top 10 most suitable
piece images in 29 out of 167 cases. On the other side, for the experiment 5
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we used as input the images containing only the edge of the puzzle pieces. In
this case, the model obtained the best accuracy, 87.3493%, and the highest
F1 score, 85.6164. However, it performed the worst on the top 10 evaluation,
with only 8.9820% of matches identified. This discrepancy can be explained by
the fact that the model did a little overfitting, and when evaluating top 10, it
obtained unrealistically high probabilities for many parts (in one of the cases
the probabilities were 1.4511e-07 non-match and 1.0000e+00 match) and it
was difficult to find the true pair.

Regarding the evolution of the cross-entropy loss at each epoch for the
training and validation sets, the results stabilize somewhere after 30 epochs
(Fig. 4). They fluctuate between 0.693 and 0.4101 for training and between
0.6933 and 0.4367 for the validation process. As expected after discussing the
outcomes of the experiment 5, the loss in this case was the lowest, for both
training and validation, while the approach with id 1 had the highest loss
values.

4.5. Discussion. The results presented in the previous section can be summed
up to achieving an MAE score as low as 0.0034 for the segmentation task and
accuracy as high as 87.34% for the edge-matching model. Even though these
are very good results from our perspective, some issues remain, which will be
discussed at length below.

Regarding the segmentation task, as mentioned, good results were achieved
on the test set. For situations where only one piece appears in an image, and
the contrast between the piece and the background is high enough, the model
manages to do the segmentation correctly. In a more complicated situation,
however, it fails to estimate the mask accurately enough so that the mask can
be used for further edge-matching. There is certainly room for improvement
in the model, especially on the part of the diversity of the data used as input,
but from the perspective of the purpose of this paper, the current capability
of the mask estimation model is satisfactory.

As for the results obtained for the evaluation top 10, an example of what
they look like can be seen in Fig. 5. Despite the actual pair not being within
the top 10, all featured images depict pieces remarkably similar to the sought
pair, each possessing a framing-compatible hole. Distinguishing the true pair
is challenging, even for a human, due to minimal differences between pieces.
Notably, with a smaller image set, finding the actual match becomes more
probable. In our experiments, the task was challenging, with a test set com-
prising 332 pairs. Another attribute that influences the model results for edge-
matching is the ratio between the piece and the image sizes. Some images were
taken at a shorter distance between the camera and the piece, and others at
a longer distance. Thus, the model may learn to classify as non-match two
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Figure 4. Epoch loss for training and validation on segmentation (left col-
umn) and on edge-matching (right column)

pieces that in reality match, but the images do not overlap perfectly because of
the different size ratios. To investigate the extent of this issue, we constructed
a confusion matrix (Fig. 6) for the model trained using the DS3 dataset (ex-
periment id 5 ). False negatives account for 11.14% of the total predictions,
but only 11.9% of the incorrect predictions are false positives, revealing that
the model is more prone to generating false negatives than false positives.

For the specific situation of a puzzle, where the solution is guaranteed to
be unique, the process can be continued with the assembly of the puzzle. The
compatibility of a piece with the top 10 possible pairs is very high, with small
differences between them, which is why, for the purpose of automatic puzzle
assembly, we consider it appropriate to find tuples of 4 pieces that match two
by two, and then match them all together. For what we set out to do, this
step is not necessary.

Comparing the results presented in this paper with those obtained by other
researchers is difficult. One reason is that in some papers the authors used

Figure 5. Example of very probable
matches found for a piece, yet none of
them is the true pair.

Figure 6. Confusion matrix for the
edge-matching model trained with
DS3
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image patches ([18], [14]), as discussed in Section 2. In [18], the highest accu-
racy obtained for predicting if two patches belong to the same image is 79%,
while in a similar situation, we obtained 87.3493%. Paper [14] exposes no
numerical results done on a test set, but presents a 96% accuracy achieved on
the validation set. Our best accuracy on the validation is only 89.15%, but
our dataset had just 2322 entries for training and 664 for validation, while in
the mentioned paper a set of 6000 entries was used for training and 1000 for
validation. An overfit on the training data cannot be excluded in their case,
since the authors of [14] mentioned poor results in reconstructing an image
from patches, despite the high accuracy.

Another difficulty comes from the fact that some works exhibit working with
three-dimensional models of artefacts [8] or 3D puzzles [5], and our solving is
strictly based on 2D images. While [8] lacks numerical results, in [5] the model
manages to solve a 3D 18-piece puzzle successfully. However, when tested on
a broken ostrich eggshell, only 11 out of 15 shell pieces are placed correctly.

As for the papers [6], [7], [12] and [2], they come closest to our work in
terms of the proposed problem, because they use 2D puzzle pieces, i.e. pieces
of documents, as input data. What distinguishes our work is the use of deep
learning techniques, whose help is difficult to estimate in comparison with im-
age processing techniques. This happens especially because in the previously
mentioned works the methodology for evaluating the experiments is to mea-
sure the time taken to reassemble the puzzle, i.e. the document, while this was
not a main focus of our work. Also, in the case of [2], the reassembled docu-
ments are cut into only 4 parts, and the puzzle pieces used in [6] and [12] have
very different shapes from each other, much more irregular than the pieces of
a normal jigsaw puzzle. These aspects favour the success of the model. In
terms of results, Makridis et al [12] present the assembly of a puzzle, without
mentioning the time needed for the whole process, and in [2] the best image
preprocessing time was 0.394s, and the best joining time was 0.336s. The
results provided in [6] refer to the solving of a 48-piece puzzle in 58 minutes
and a 67-piece one in 31 minutes. The same 48-piece puzzle was solved in 3
minutes with the approach from [7], which is a great improvement. However,
the approach from [7] is not as robust, since the authors mentioned a higher
assembly time in comparison with [6], for the same 67-piece puzzle.

5. Conclusions and future work

The aim of this paper is to develop a solution to the problem of matching
puzzle pieces from images, using deep learning methods. Solving this problem
is the first step in the digital approach to the difficult task of restoring artefacts
(e.g. putting together ostraca pieces). The solution proposed consists of two
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phases: segmenting the puzzle pieces, followed by finding matching pairs for
each side of a puzzle piece.

Regarding segmentation, the method applied is the U-Net model, trained
with 462 images with puzzle pieces and related masks. The main result ob-
tained in this respect is a score for the dice coefficient of 0.9751 for the test
set, which represents a very good result given that the highest possible value
is 1 for perfect overlap.

The edge-matching task has been addressed with a Siamese architecture
model. Two masks are processed at the same time by two identical networks,
and then the absolute difference between the two feature vectors is computed.
The result is flattened, linearized, and at the end, the output consists of two
probabilities: match or non-match. The main result obtained is an accuracy
as high as 87.3493% and an F1 score of 85.6164, for a number of 332 pairs of
masks used in the test. This result was achieved when the masks used to feed
the network were processed so that they contained only the contours of the
pieces. Reversing the colours of the second mask also proved effective, so the
model managed to find for 17.36% of cases among the best 10 predictions (the
most compatible images), the ideal match of the piece in the initial image.

In the future, we plan to improve the image set with more puzzle pieces
in different contexts, to help the segmentation model identify the contours of
the pieces in any situation. Also, for the edge-matching model, the results of
the top 10 evaluation need improvement, which could be done by developing a
more complex model and diversifying the dataset. The differences between the
puzzle pieces are small, at least for the puzzles we used, which made learning
the matches difficult.

The current study contributes to the exploration of artefact reconstruction,
obtaining good results on both segmentation and edge-matching of images
with puzzle pieces.
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Abstract. Considering the current advancements in computer vision it
can be observed that most of it is focused on two dimensional imagery. This
includes problems such as classification, regression, and the lesser known
object matching problem. While object matching ca be viewed as a solved
problem in a two dimensional space, for a three dimensional space there is
a long way to go, especially for non-rigid objects. The problem is focused
on matching a given object to a target object. We propose a solution
based on Graph Neural Networks that tries to generalize over multiple
objects at once, based on self-attention and cross-attention blocks for the
network. To test our solution, we utilised five convolutional operators
for the layers of the model. The convolutional operators we compared
included GCNConv, ChebConv, SAGEConv, TAGConv, and FeaStConv.
This paper aims to find the best operators for our architecture and the task.
Our approach obtained favourable results for predicting the barycentric
weights for the model, while struggling on predicting the triangle indexes.
The best results were obtained for the models using GCNConv, for the
triangles index prediction and FeaStConv for the barycentric coordinates
prediction.

1. Introduction

In the most recent years we have observed multiple new technologies that
require or are improved by usage of 3D models. This ranges from applications
in medicine [13] to research oriented papers about simulations of 3D environ-
ments. Still, very few papers talk about how we can relate 3D objects to
real-world objects. By creating a solution for relating 3D objects to real-world
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objects, software such as NextMed [13] could be improved. On a similar as-
pect, the validity of such an application is given by frameworks like the one
presented in [26]. By starting this research we could end up with applica-
tions that would easily allow to overlap digital reconstructions over real-world
objects automatically. This could be especially useful in medicine, where we
could have a 3D recreation of an organ that could be moulded automatically
over the real organ.

In this paper, we will explore one of the first steps in relating real-world
objects to those from a virtual world. The process consists of first seeing if it
is even possible to relate 3D objects to one another by focusing on deformable
objects. While 2D image matching or object matching can be considered
an optimised problem [16, 19, 30], the same cannot be said for cases where
the objects can suffer various deformations such as cuts, holes, or surface
changes. Furthermore, very few, if any, experiments have focused on creating
a reference-object agnostic solution for the problem.

Throughout this paper, we will present the overall field of study, how we
constructed a dataset for the problem and how the model for different kinds
of solutions have been made. Our focus will be on exploring solutions that
work based on multiple inputs, data from multiple datasets, and multiple
shape classes for the objects. We aim to obtain a good comparison between
multiple model architectures for deformable object matching, mainly focusing
on comparing convolutional operators that work on graphs, representing 3D
objects. The solution that we provide will be based on using self and cross-
attention blocks in a graph neural network to take into account both the
deformed shape and the target shape.

Our paper is structured into eight sections starting with the introduction.
In Section 2 we present the current state-of-the-art and other approaches in
the field of study, to properly define it. Section 3 will be used to discuss the
problem of object matching, and which solutions and datasets for the problem
are currently available. After defining the problem, Section 4 will be used
to define what graph neural networks are and what the different convolution
operators for those networks are. We will present our proposed model design
and its evaluation in Section 5. The results and experimental setup will be
presented in Section 6 and then they will be further discussed in Section 7.
We will go over a few conclusions and further research possibilities in Section
8.
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2. Related work

To start off, we need to focus on what has already been accomplished in
this field. As such, in this section we will present the already solved problem
or existing models related to the problem at hand.

At the very beginning of research related to object matching, most of the
solutions were focused on works related to two dimensional images. While
articles such as [17, 19, 32] have already solved the problem, they also indi-
cate possible approaches for solutions in higher dimensions. Article [16] in
particular shows the possibility of using graph neural networks (GNN) for the
problem with very promising results.

Deformable objects, especially if related to matching between three dimen-
sional objects, have been especially of interest in challenges for the field. A
clear example of this are the articles [4, 8, 9, 22] related to the SHREC event
in various years. The results from the challenge show that the current state-
of-the-art is represented by Partial Functional Maps, followed closely behind
by an approach using Random Forests. This indicates the possibility of us-
ing a machine learning approach for the problem and creating a model that
can learn to associate one model to multiple objects. With partial functional
maps, the authors of [22] managed to obtain a matching percentage of around
80% for deformations involving both cuts and holes. This method creates a
form of mapping between the points of one object to another, treating them
like functions.

On the side of usefulness for the field, we do not need to look further than
the field of robotics. Matching a predefined 3D object to a real-world counter-
part has been essential in multiple papers [20,31,34], including even solutions
outside of robotics [26] based on rigid objects. Still, the problem in robotics
is that it relies heavily on using an almost perfect environment and object
representation to the 3D counterpart.

Other methods for deformable object matching are based on point cloud
data. One of those solutions can be found in [23], focusing on human-shaped
3D objects. The authors present a method that uses learning based on func-
tional maps, focusing only on heaving self-attention blocks that embed the
objects. They claim to achieve state-of-the-art results obtaining an error of
5.4e−2. A similar solution, closer in structure to what we propose, for learning
point cloud matching is presented in [12]. This solution provides a network
based on self and cross-attention blocks using the Chamfer distance as its loss
function. Compared to the previous solution, the authors validate their ap-
proach on multiple shape classes for the 3D objects. On SHREC 2019, they
obtained an accuracy of 15.3% and an error of 5.6, beating the other methods
they compared with. Given that both approaches obtained state-of-the-art
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results, it is easy to say that in regards to using point clouds the solutions are
well optimised. Still, the discrepancy between the error and accuracy for the
last method shows the need for further investigation of the architecture and
of the results obtained by other methods.

Considering everything that has been mentioned so far, it should be clear
that the problem itself still requires a lot of improvements. This is especially
true when it comes to constructing a machine learning approach for the prob-
lem, as we will be doing in the following sections.

3. Deformable object matching

In this section, we will discuss the problem of 3D deformable object match-
ing, some already existing solutions for the problem and how a dataset for
the problem looks like. To do all of this, we will separate our findings into
two subsections. The first subsection will be for the larger problem, while the
second will be dedicated to defining our dataset.

3.1. Problem definition. Deformable object matching, compared to match-
ing rigid bodies, is a lot more complicated than it might seem. It requires
finding a way to transform the given object into something that more closely
resembles the reference object. The main problem here is finding the correct
type of transformation needed, as it goes beyond basic transformations such
as translation, rotation and scaling [5, 26, 29]. Regarding this, we can use
barycentric weights to solve the problem [4,8, 22].

(1) p =
3∑

i=1

λi ∗ vi, where :
3∑

i=1

λi = 1 [14]

Considering Equation 1, we can transform any point from a deformed object
to a position that more closely matches that of the target object. In the
equation, λi with i ∈ {1, 2, 3} represents the barycentric weights for a given
triangle from target object. The weights are chosen in such a way that by
multiplying each weight to the vertices of the triangles and then summing
them we get a approximation of a node from the deformed object to the
target object [4,8,14,22]. The transformation could lead to an association like
that from Fig. 3, given the rightmost result.

3.2. Dataset. An important part of our project was gathering relevant and
consistent data from across multiple datasets. In the end, we have found
two datasets with very similar formats that still offered their own unique
elements for the problem. The datasets that were used are SHREC 2016 [4,22]
and SHREC 2019 [8]. The first dataset offers deformations such as body
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movements, holes and cuts. On the other hand, the second dataset offers
deformations such as surface changes, wrinkles, and joint movements.

In total, the datasets offer 276 three dimensional objects spread across 11
classes. The classes are for the most part evenly distributed, with the main
exceptions being the human class having the highest number of objects and
the glove class having the lowest number of objects [4, 8, 22]. For our testing
environment, we have constructed a dataset with a 70-30 train-test split. We
have split the dataset evenly for all the classes.

4. Graph Neural Networks (GNN)

As stated in Section 2, the current state-of-the-art is represented by the
use of Functional Maps, closely followed behind by the use of Random Forests
[4, 8, 9, 22]. Both of the mentioned approaches fail to properly generalize to
different types of damage. While there is another approach using Graph Neural
Networks [21], even that one still bases its final layer on Functional Maps. We
are researching the possibility of using GNNs without any other attachments.
For that, we will look into how different types of convolutions can improve the
results.

Defining graph neural networks is essential for our research. As such, we
will be looking into the general definition for this machine learning architecture
and how it can be used to suit our needs. We defined multiple subsections for
this case, to understand not just the general definition, but also the subsequent
definitions needed for our model architecture.

4.1. Definition. Graph neural networks are a variant of neural networks such
that they can work on graphs. In our case, a graph is defined as G = (V,E),
where V represents the set of nodes in the graph and E is the set of edges
that connect the nodes. We can also associate a matrix A ∈ RN×N to the
graph, representing the adjacency matrix. Using this, and the power of neural
networks we can create predictions at node, edge, and graph level [18,35,37].

Defining a mathematical expression for GNNs requires taking into consid-
eration information about graph structures and neural networks at once. This
consists of using information regarding nodes, edges, and learnable weights,
which are represented in the following equation:

(2) ht+1
i = f(htiWi +

∑
j∈Ni

1

cij
htjWj) [35,37]

To understand GNNs even better, we will analyse Equation 2. In this equa-
tion hti represents the vector representation of node i at time t, Wi represents
the learnable weights for the given node i (which are not always present), cij
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represents a non-weighted connection between nodes i and j, Ni is considered
the node neighbourhood of node i and Wj represents the learnable weights for
the given node j. In the equation, f represents a propagation function and
if needed, can be interpreted as an activation function. This equation stands
at the base of how most, if not all, GNNs are constructed [35, 37]. While it
might suffer changes from implementation to implementation, the main idea
remains the same.

4.2. GCNConv. This graph convolution was created for the task of semi-
supervised classification. Still, this does not mean it can not be used for
scenarios such as ours. Considering this, we will look at what the main aspects
of this convolutional operator are and what kind of results were obtained using
it in the original presentation of the method [18,37]. If we were to start from
equation 2, we can form a new equation, with a similar structure.

(3) Ht+1 = σ(D̃− 1
2 ÃD̃− 1

2HtW t) [18]

Equation 3 represents the propagation rule of the network. Similarly, we
work just like before with the node level information, like in Equation 2. Here
Ht represents the activation results of layer l and for t = 0 it represents
the results of the initial graph, similarly to how hti was used in the previous
equation. W t represents, just as before, the learnable weights for layer l. σ
denotes the activation function for the layer, and it can take multiple forms. In
the original paper, the authors have used both softmax and ReLU as possible

approaches. D̃ii =
∑

j=0 Ãij is considered a diagonal degree matrix, for which

Ã = A+ I is the adjacency matrix with self inserted loops [18].
In the original evaluation, the authors of the method have shown through

rigorous testing that their method could beat other approaches. In their ex-
periments, they have noted improvements over multiple runs. They have also
shown how their method can get over 80% accuracy where other methods
would only get at most 75% [18].

This convolutional operator has also been proven to be time-efficient. It
was shown that for the most part it performs the same on GPU and CPU,
only slowing in performance when there are more edges in the graph. For
a number of 1k edges the authors have noted a performance of around 10−3

seconds/epoch and only at 10M nodes did they reach 10 seconds/epoch on
GPU [18].

4.3. ChebConv. The ChebConv operator was created with the idea of cre-
ating GNNs with fast localized spectral filtering. This means that the authors
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implemented ideas similar to pooling in their approach [6]. Those can be
better portrayed by the following equation:

(4) Ht+1 =
K−1∑
k=0

ΘkTk(Λ̃) [6]

This convolutional operator is described in full in Equation 4. Here, Θ
is a vector of polynomial coefficients, more precisely Chebyshev coefficients.

Tk(Λ̃) is a Chebyshev polynomial of order k and it is determined recurrently.

To start the recurrent process we consider Λ̃ = 2Λ
λmax

− I, where I is the
identity matrix and Λ is the diagonal matrix formed by the frequencies of the

graph, T0(Λ̃) = H, and T1(Λ̃) = Λ̃H. We can then consider the recurrent

function Tk(Λ̃) = 2Λ̃Tk−1(Λ̃) − Tk−2(Λ̃). The authors have noted that the
entire operation would have a computation cost of O(K|ϵ|) [6].

For the experimental phase of the research, the authors have revisited var-
ious datasets for which solutions exist using classical CNNs and other ma-
chine learning methods. Those datasets include MNIST and 20NEWS. For the
MNIST dataset, they have shown an almost exact performance with CNNs.
Still, the proposed architecture outperformed other methods in terms of time
efficiency. As for the 20NEWS dataset, the model did not manage to out-
perform the Multinomial Naive Bayes approach. Although it did not perform
better in this case, the authors noted that their proposed architecture still
outperforms other fully connected neural networks [6].

In their research, they have also tackled the influence of graph quality on
the results. They have noted that the way the graph is constructed is the
most important part for their operator to work. For this, they considered a
comparative use of image and text graphs. What their study has shown is
that the method works best on image graphs, but due to the limitation of text
graphs, it cannot outperform the current state-of-the-art [6].

4.4. SAGEConv. This method was created on the assumption that not all
nodes in the graph need to be used for determining the embedding of one
node. SAGEConv came as a way to essentially improve the already existing
approach of using low-dimensional node embeddings for large graphs. As
such, they proposed a framework called GraphSAGE [15]. The framework
also stands as one of the more popular approaches for graph convolutions [37].
In our research we are only interested in the convolutional operator of this
framework and how it can help us. We will detail our findings and explain
what we will be using from this framework.
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The SAGEConv operator can be described in the form of two equations, of
which the latter is optional. This idea comes from showing the operator in
two ways, a standard equation operator and an optimised operator that can
be used for further improving the model [15].

(5) ht+1
i = W1h

t
i +W2 ∗meanj∈Ni(h

t
j) [15]

(6) ht+1
j = σ(W3h

t
j + b) [15]

We can formulate the equation for the convolutional operator based on the
information from Equations 5 and 6. In those equations Wi for i ∈ {1, 2, 3}
represent the weight matrices that will change during the training process.
As previously used, σ can represent any activation function. In the original
article, the authors have not presented any functions that would be more
favourable to be used. hi represents the feature vector for a node vi [15].

In the implementation of the convolutional operator, the most interesting
part is the relation between Equation 5 and Equation 6. By that, we are re-
ferring to the fact that the relations can work independently of one another,
at least according to the PyTorch Geometric implementation. We can then
consider that the combined use of the two equations is an improved version of
the convolutional operator over the graph [10, 15]. In our work, we only con-
sidered the base version, without the additional improvement to the method.
This is due to it requiring a more complicated implementation of our model.

For the qualitative evaluation of the operator, the authors have noted a
comparison against four other methods. Those methods include the DeepWalk
algorithm, a random classifier, logistic regression, and a hybrid between raw
features and DeepWalk embeddings. They have also noted extended versions
of their algorithm that use the operator from Subsection 4.2, an LSTM, a
mean operator, and a pooling operator [15,18].

The testing took place on three datasets. Those datasets were based on
citations, Reddit posts, and the PPI dataset. On all three of those, the pro-
posed algorithm has outperformed all other methods, with the most notable
results being from the GCNConv and LSTM variants. The algorithms were
tested on both supervised and unsupervised environments. The authors have
noted that their method does generalize across graphs [15].

4.5. TAGConv. In the previous three subsections, we have considered the
use of the more popular convolutional operators. Now it is time to get into
more problem-specific operators, mainly those that were created to work di-
rectly with 3D objects. Graph convolutions can defined on the spectral or
vertex domains, of which the authors of TAGConv have chosen the latter.
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The name of the model stands for Topology Adaptive Graph Convolution and
it is mainly based on the idea that the network/operator will adapt to the
topology of the graph [7].

(7) Ht+1 =
K∑
k=0

(D− 1
2AD− 1

2 )kHtWk [7, 10]

Since we are interested in the convolutional operator from the entire net-
work, we will only look at that part of its equation. The operator is represented
by Equation 7 and it is adjusted to fit its PyTorch Geometric implementation.
In this case, we considerK to have the base value of 3, representing the number
of hops. A represents the adjacency matrix of the graph and Dii =

∑
j=0Aij

the diagonal degree matrix. Considering that, D− 1
2AD− 1

2 is the normalization
of the diagonal matrix. As always, W represents the learnable weights for the
convolutional operator [7, 10].

This operator, like the previous ones, has been tested mainly on standard
benchmark datasets. Those datasets include Pubmed, Citeseer, and Cora.
While the model was tested against other standard methods such as DeepWalk
and deep convolutional neural networks, it also tested against other graph
neural networks such as ChebNet and GCN, presented in the first two subsec-
tions. According to the authors, TAGConv outperforms the other methods on
all three datasets, with an accuracy of over 80% on two of the datasets [7].

While topology is an important part of defining geometric forms, it is not
enough. For the next subsection, we will be looking at our final operator,
created to work perfectly with 3D objects. Just like now, we will be looking
at it from a theoretical and applied perspective.

4.6. FeaStConv. For our final operator, as previously stated, we will focus
on direct applications to 3D objects. This operator was constructed from the
need to create something like convolutional neural networks, but for 3D shapes.
Its name stands for Feature-Steered Graph Convolutions and its original eval-
uation was done directly on 3D meshes for a variety of problems regarding
shape analysis [33].

FeaStConv can be better described in the following equation:

(8) ht+1
i =

1

|Ni|
∑
j∈Ni

K∑
k=1

qk(h
t
i, h

t
j)Wkh

t
j [10, 33]
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The equation, like in the previous subsection, is defined according to its
implementation in the original article and the PyTorch Geometric implemen-
tation. Equation 8 describes the convolutional operator in full. The most
unique elements of the equation are represented by K and qk representing the
number of attention heads and an activation function, respectively. In this
equation qk(hi, hj) = softmaxj(u

T
k (hj − hi) + ck), where Wk, uk and ck are

trainable parameters [10,33].
As mentioned, above, the operator was tested and experimented with using

problems related to 3D shape analysis. Those problems included 3D shape
correspondence and part labelling. For 3D shape correspondence, the model
was compared to other methods such as PointNet, ACNN, GCNN and MoNet.
The model proposed by the authors outperformed all other models by a lot,
having an accuracy of 98% at most and 88% at least. For the part labeling
problem, they used a dataset based on ShapeNet [2] and compared it with
four other methods, some of which were mentioned before. While it did not
outperform any of the other methods, except one where the difference was of
0.1%, the model still got overall similar results [33].

5. Model and evaluation

We need to properly define the model architecture and evaluation on our
data. We will explore this in two subsections, dedicated to each subject.
Following that, we will focus on the experiments defined by us.

All of the implementation effort was done using PyTorch and PyTorch Geo-
metric for the loss function and for the implementation of the convolutional
operators, respectively. We have chosen those frameworks, based on the num-
ber of operations that they had implemented and their usage in other pa-
pers [10,25].

5.1. Model. Our model architecture is based on the idea of using self and
cross-attention blocks. Those blocks are a necessity for the problem, as we
have to work with multiple 3D objects at once for one result. As a reference
for constructing our model we have used SuperGlue [30] and later validated it
based on articles that came out during our research that tried to use similar
architectures for the use of self-attention and cross-attention blocks [21]. To
further emphasise the validity of our approach, we also considered looking into
approaches that try to solve the problem in other contexts, such as point cloud
data [12]. We only used other models as architectural references, rather than
for specific layer parameters.

Fig. 1 is a visualization of our model and how it works. The desired out-
put, as referenced in Section 3 is an [n,4] vector. In this case, n represents the
number of nodes in the graph and 4 is the size of the output for each node,
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Figure 1. A diagram describing the Graph Convolution Net-
work (GCN) created to address the problem of object matching.
The model works using a dual input: the deformed object and
the reference object. In the third layer of the model, the two
outputs are concatenated and the final result will be a tensor
of size four representing: the triangle of correspondence, and
the barycentric weights for the given triangle.

representing the triangle index and barycentric weights. The self-attention
blocks are meant for reinterpreting the object graphs based on node neigh-
bourhoods and the cross-attention block is meant to learn how the two graphs
can interact.

For the cross-attention block and deformed self-attention block we have used
the approach of reducing the number of hidden channels after each individual
convolution. First, it is divided by 2 and then by 4. In the case of the
reference/target self-attention block, we used the opposite approach as we
wanted to obtain a larger embedding of the graph at the end. As such, we
first multiply the number of hidden channels by 2 and then by 4. Between the
convolutions, we have used a ReLU activation function and for the output we
have used the ReLU for the triangle output and SoftMax for the barycentric
part of the output.

5.2. Training and evaluation. We have decided to evaluate our model us-
ing three loss functions. The loss functions were determined based on the
required outputs of the model in regard to the dataset. As such, we have
determined that there needs to be a loss for the triangle index L1Triangle, one
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for the barycentric weights L1Baryc and one for the combined loss of the two
L1Combined.

(9) L1combined = L1triangle + L1baryc

For our experiments, we have used the standard definition for the loss func-
tion, which is used to determine L1Triangle and L1Baryc. In Equation 9 we
can observe the combined loss function which represents the sum of the other
loss functions and which was used to train the model [3, 11, 24]. To complete
the training requirements, we also need to mention the use of the Adam op-
timizer with a learning rate of 3e − 4, which was chosen based on its proven
improvements in performance [1, 36].

We also consider the mean geodesic error as a possible loss function, as
it was used on the SHREC 2016 dataset [22]. In the end, we opted against
this. After further research, the function did not seem standard enough to be
selected.

6. Experiments

6.1. Setup. To cover all possible architectural and data combinations, we
have decided to explore the problem in four main ways. Each of the three
experiment types will have a role in the evaluation of the model in a new
environment to see how it reacts under new conditions. The experiments
are: [4, 8, 22]

• Experiments on the combined dataset from SHREC 2016 and 2019
[4, 8, 22]

• Experiments on the SHREC 2016 dataset [4, 22]. To evaluate if the
standalone dataset offers a better training environment.

• Experiments on the SHREC 2019 dataset [8]. Just like the previous
point, it will be used to evaluate the consistency of the results on a
standalone dataset. Additionally, it will also help in defining which
dataset is better as a training set,

• Experiments on some of the single classes from the SHREC 2016
dataset [4, 22]. An experiment type that will help determine if the
problems that we found are related to the use of multiple classes or
due to the model that is being used.

Additionally, the experiments will be done for all the convolutional layers
defined in Section 4. Besides the change in convolutional layers, we also applied
changes in terms of hidden channels, for a number of 20 epochs each and a
batch size of 20. An exception for the batch size was used in the case of the
single class experiments, where we used a batch size of one.
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For the experiments done on the entire dataset we have only used the best
combinations obtained from the other experiments. We also reduced the num-
ber of epochs by five and expended the batch size by ten, due to time con-
straints and computational availability in the used environment.

Conv. type Ch. Embed L1Triangle L1Baryc L1Combined

train test train test train test

GCNConv
16

100 7.4E+03 2.2E+04 4.2E-01 1.3E+00 7.4E+03 2.2E+04
500 5.7E+03 1.7E+04 4.3E-01 1.4E+00 5.7E+03 1.7E+04

32
100 7.3E+03 2.3E+04 4.1E-01 1.3E+00 7.3E+03 2.3E+04
500 5.3E+03 1.6E+04 4.6E-01 1.4E+00 5.3E+03 1.6E+04

ChebConv
16

100 1.1E+07 2.7E+07 4.4E-01 1.4E+00 1.1E+07 2.7E+07
500 7.0E+06 1.6E+07 4.4E-01 1.4E+00 7.0E+06 1.6E+07

32
100 2.9E+07 6.7E+07 4.6E-01 1.4E+00 2.9E+07 6.7E+07
500 8.6E+06 1.9E+07 4.5E-01 1.4E+00 8.6E+06 1.9E+07

SAGEConv
16

100 7.4E+03 2.3E+04 4.5E-01 1.4E+00 7.4E+03 2.3E+04
500 6.8E+03 2.0E+04 4.4E-01 1.4E+00 6.8E+03 2.0E+04

32
100 5.9E+03 1.8E+04 4.0E-01 1.2E+00 5.9E+03 1.8E+04
500 5.7E+03 1.7E+04 4.2E-01 1.3E+00 5.7E+03 1.7E+04

TAGConv
16

100 7.8E+03 2.3E+04 4.2E-01 1.2E+00 7.8E+03 2.3E+04
500 7.1E+03 2.3E+04 4.1E-01 1.3E+00 7.1E+03 2.3E+04

32
100 7.2E+03 2.3E+04 4.3E-01 1.3E+00 7.2E+03 2.3E+04
500 6.0E+03 1.9E+04 4.2E-01 1.3E+00 6.0E+03 1.9E+04

FeaStConv
16

100 9.9E+03 3.1E+04 3.5E-01 1.1E+00 9.9E+03 3.1E+04
500 9.4E+03 2.9E+04 3.6E-01 1.1E+00 9.4E+03 2.9E+04

32
100 9.5E+03 3.0E+04 3.6E-01 1.1E+00 9.5E+03 3.0E+04
500 8.0E+03 2.5E+04 3.8E-01 1.2E+00 8.0E+03 2.5E+04

Table 1. The results for a single class in the SHREC 2016
dataset [22]. The class was chosen so that it would have a
single reference object.

6.2. Results. Table 4 is the table that contains the evaluation of the model
in the context of the full dataset that was originally presented in Section 3.
As for Tables 2 and 3, they represent the results for individual datasets that
formed the full dataset. Finally, Table 1 presents the model aggregated results
when evaluated on a single class.

The scope of the results is to determine the best possible combination.
Our research has so far only focused on determining the best architectural
combination for a graph neural network for the task. We only considered longer
amounts of training for the best combination, due to our limited computational
power. Furthermore, the experiments were designed in such a way as to allow
us to find the weakest links in our dataset and approach. We will touch up
more on our decisions in the next section.
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Conv. type Ch. Embed L1Triangle L1Baryc L1Combined

train test train test train test

GCNConv
16

100 6.3E+03 1.9E+04 4.2E-01 1.3E+00 6.3E+03 1.9E+04
500 5.5E+03 1.7E+04 4.3E-01 1.3E+00 5.5E+03 1.7E+04

32
100 5.9E+03 1.8E+04 4.3E-01 1.4E+00 5.9E+03 1.8E+04
500 5.4E+03 1.7E+04 4.6E-01 1.4E+00 5.4E+03 1.7E+04

SAGEConv
16

100 6.3E+03 1.9E+04 4.6E-01 1.4E+00 6.3E+03 1.9E+04
500 6.2E+03 1.9E+04 4.4E-01 1.4E+00 6.2E+03 1.9E+04

32
100 5.8E+03 1.7E+04 4.1E-01 1.3E+00 5.8E+03 1.7E+04
500 5.5E+03 1.6E+04 4.3E-01 1.3E+00 5.5E+03 1.6E+04

TAGConv
16

100 6.7E+03 2.1E+04 4.2E-01 1.3E+00 6.7E+03 2.1E+04
500 6.3E+03 2.0E+04 4.2E-01 1.3E+00 6.3E+03 2.0E+04

32
100 6.2E+03 1.9E+04 4.3E-01 1.3E+00 6.2E+03 1.9E+04
500 6.2E+03 2.0E+04 4.6E-01 1.4E+00 6.2E+03 2.0E+04

FeaStConv
16

100 8.3E+03 2.6E+04 3.8E-01 1.2E+00 8.3E+03 2.6E+04
500 - - - - - -

32
100 - - - - - -
500 - - - - - -

Table 2. Our model’s results on the SHREC 2016 dataset
[22].

Conv. type Ch. Embed L1Triangle L1Baryc L1Combined

train test train test train test

GCNConv
16

100 6.3E+03 2.0E+04 4.7E-01 1.5E+00 6.3E+03 2.0E+04
500 5.7E+03 1.8E+04 4.5E-01 1.4E+00 5.7E+03 1.8E+04

32
100 5.5E+03 1.7E+04 4.3E-01 1.4E+00 5.5E+03 1.7E+04
500 5.5E+03 1.8E+04 4.1E-01 1.3E+00 5.5E+03 1.8E+04

SAGEConv
16

100 6.6E+03 2.1E+04 4.2E-01 1.3E+00 6.6E+03 2.1E+04
500 6.1E+03 1.9E+04 4.3E-01 1.4E+00 6.1E+03 1.9E+04

32
100 5.8E+03 1.8E+04 4.6E-01 1.5E+00 5.8E+03 1.8E+04
500 5.5E+03 1.7E+04 4.4E-01 1.4E+00 5.5E+03 1.7E+04

TAGConv
16

100 6.5E+03 2.2E+04 4.5E-01 1.5E+00 6.5E+03 2.2E+04
500 6.1E+03 2.1E+04 4.6E-01 1.5E+00 6.1E+03 2.1E+04

32
100 6.2E+03 2.0E+04 4.5E-01 1.4E+00 6.2E+03 2.0E+04
500 6.1E+03 4.0E-01 4.5E-01 1.5E+00 6.1E+03 2.1E+04

FeaStConv
16

100 7.9E+03 2.6E+04 4.5E-01 1.4E+00 8.0E+03 2.6E+04
500 - - - - - -

32
100 7.6E+03 2.5E+04 4.4E-01 1.4E+00 7.6E+03 2.5E+04
500 - - - - - -

Table 3. Our model’s results on the SHREC 2019 dataset [8].

Conv. type Ch. Embed L1Triangle L1Baryc L1Combined

train test train test train test
GCNConv

32 500
5.4E+03 1.7E+04 4.5E-01 1.4E+00 5.4E+03 1.7E+04

SAGEConv 5.6E+03 1.7E+04 4.3E-01 1.3E+00 5.6E+03 1.7E+04
TAGConv 6.2E+03 2.0E+04 4.5E-01 1.4E+00 6.2E+03 2.0E+04
FeaStConv 16 100 8.3E+03 2.6E+04 3.8E-01 1.2E+00 8.3E+03 2.6E+04

Table 4. Our model’s results on the dataset formed by com-
bining the SHREC 2016 and 2019 datasets [8, 22].
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7. Discussion

When confronted with the problem of predicting large numbers for the
triangle indexes, we have determined a shortcut for the training procedure.
The outputs here are in the tens of thousands and are rather hard to learn
for a neural network. To simplify the process we have tested multiplying the
output with multiples of ten. The best results were obtained when multiplying
the output by 100.

In our approach, we have encountered several benefits and some downfalls.
To start off, we have observed a huge under-performance while using Cheb-
Conv as observed in Table 1. Since we started with single class experiments
to get an initial idea of how to continue the rest of the experiments, we have
removed all experiments using ChebConv architectures from the other ex-
periment types. We motivate this choice by arguing that if an architecture
under-performance on a single class, it has no way of performing better when
put against multiple classes.

(a) Train results. (b) Test results.

Figure 2. A visual representation of the triangle index loss
results using FeaStConv for the individual datasets. The purple
line represents the results for the SHREC 2016 [4, 22] dataset,
while the green line represents the results for the SHREC 2019
[8] dataset.

To further remove some of the experimental difficulties for our complete
dataset, we have experimented with the individual datasets too. The experi-
ments can be seen in Tables 2 and 3. We have come to understand that there
is not a huge performance difference between the models on the two datasets,
some of which are further established by the results from Fig 2. Related to the
graphical results are the results for the FeaStConv architecture. We have ob-
served that this convolutional operator performs poorly for the triangle index
prediction, but outperforms all other models on the barycentric predictions.
Furthermore, it is the only architecture that works better with a smaller size
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embedding and smaller size channels. Some problems can observed, as there
are empty cells in the tables. The model seemed to have caused a memory
overflow for the GPU in our environment. Considering this, we had to give
up on running some of our experiments.

Figure 3. An illustration of the predictions for the seventh
image with holes type damage from SHREC 2016 [4, 22]. This
diagram contains, from left to right, the full prediction of the
model after 20 epochs, only the barycentric prediction with
correct triangles and the ground truth for this case.

For our final few experiments, one with each adequate model, we have
chosen the bigger size architectures. The only exception to this rule is the
previously presented model. In Table 4, one can observe the results for what
we considered to be the best model. The observations made so far, on the
smaller datasets, have remained true. As such, we can consider that the best
model architecture is the one using GCNConv, followed by the one using
FeaStConv.

To get a better representation of our model’s performance, we will now be
referring to Fig. 3. Here the reader is free to observe how the model performs
when only using the barycentric predictions together with the correct triangle
indexes. When using the full output, the shape ends up being clustered to
something alike a centre of gravity. This does not mean that all the predictions
are wrong, but the wrong prediction can have a huge effect on the model’s
performance.
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Considering only the barycentric part of the output, the model’s perfor-
mance becomes almost indistinguishable from the ground truth. This further
indicates that the next steps of our research should be focused on making
the model perform better on the triangle index part of the output. Several
methods could be used here, such as using an output that gives the indexes of
three nodes and only later validating the correctness of this output.

8. Conclusions and further research

In our experiments, we have shown the potential of using various model
architectures for deformable object matching. The best overall results were
obtained using the GCNConv model with 32 starting hidden channels and an
embedding size of 500, for the prediction of the triangle index. In the case of
predicting the barycentric weights, the best results were obtained using the
FeaStConv model, with of 16 starting hidden channels and an embedding size
of 100.

We consider that the results give the right direction to continue developing
the GNN model. Seeing that two distinct architectures have given the best
results on the two targets of the model, we might want to look more into
using them. A combined environment for the two convolutions is not out of
the question, nor verifying their hyper-parameters.

Considering the conclusions and every experiment done so far, we have
taken into consideration a few possible approaches for further research. Those
approaches consist of changes and additions to the model and the dataset.

A possible improvement to the dataset is to consider several basic geometric
forms such as cubes, spheres, and cones and then apply random deformations
over them. This could show the potential of using synthetic data to train a
more robust model.

As mentioned in the very first section, the final scope of this research would
be to see if it can match a complex 3D object to a partial reconstruction of the
object from a 2D image. This could be done by considering the use of a state-
of-the-art depth estimation model such as MiDaS [27,28], which would help us
evade the need to use cameras that already have the technology implemented.

Considering the possible new environment, starting from a picture, there
will also be the possibility of using a new dataset constructed from that. The
dataset could consist of the partial 3D objects given by the depth model and
an associated complete 3D object. The only problem with this idea is the need
to have more annotated data.
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A COMPREHENSIVE EVALUATION OF ROUGH SETS

CLUSTERING IN UNCERTAINTY DRIVEN CONTEXTS

ARNOLD SZEDERJESI-DRAGOMIR

Abstract. This paper presents a comprehensive evaluation of the Agent
BAsed Rough sets Clustering (ABARC) algorithm, an approach using
rough sets theory for clustering in environments characterized by uncer-
tainty. Several experiments utilizing standard datasets are performed in
order to compare ABARC against a range of supervised and unsupervised
learning algorithms. This comparison considers various internal and ex-
ternal performance measures to evaluate the quality of clustering. The
results highlight the ABARC algorithm’s capability to effectively manage
vague data and outliers, showcasing its advantage in handling uncertainty
in data. Furthermore, they also emphasize the importance of choosing
appropriate performance metrics, especially when evaluating clustering al-
gorithms in scenarios with unclear or inconsistent data.

1. Introduction

Clustering algorithms play an important role in uncovering patterns and
structures from unlabelled data across several scientific and engineering do-
mains [5, 12, 16, 14, 7]. The added value of these algorithms lies in their
ability to group data points based on underlying similarities, thereby facilitat-
ing a deeper understanding of dataset characteristics without prior knowledge
of the group identities. In real-world contexts where uncertainty and ambi-
guity often pervade, the ability to discern coherent groups within a dataset
becomes indispensable. However, traditional clustering techniques are often
inadequate in environments driven by uncertainty, including the presence of
hybrid data (vague data or outliers). This limitation shows the necessity for
innovative approaches that can robustly handle the complexities induced by
the uncertainty and ambiguity of such landscapes.
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The introduction of rough sets theory by Pawlak [28] has facilitated the
development of clustering algorithms capable of handling uncertainty more ef-
fectively. Rough sets have mostly been applied to feature extraction [2, 17, 22,
27, 35, 19, 37, 33, 4], their use in direct cluster modeling being significantly less
common. The approaches from [21, 25, 24, 20] investigate rough sets cluster-
ing, but they are all partitioning methods. ABARC [11], on the other hand, is
a hierarchical clustering algorithm that distinguishes itself by its adeptness at
detecting hybrid data by using rough sets, as well as isolating outliers, thereby
promising enhanced clustering performance in scenarios driven by uncertainty
in data.

The evaluation of clustering algorithms in the context of uncertainty-driven
environments needs to take into account the particularities detected in data.
Internal and external performance metrics serve as critical tools in this process,
providing insights into an algorithm’s ability to generate cohesive and well-
separated clusters while aligning with external validity measures when ground
truth is available.

This paper aims to perform a comprehensive comparison of the ABARC
algorithm against several supervised and unsupervised learning algorithms,
employing a suite of performance metrics to assess each algorithm’s efficacy
across standard datasets. Through this comparative analysis, our aim is to
show the strengths and limitations of the ABARC algorithm and its coun-
terparts, thereby contributing to the ongoing research on optimal clustering
approaches in the context of data uncertainty.

The paper is structured as follows: Section 2 presents an overview of the
clustering algorithm based on rough sets, Section 3 illustrates the comprehen-
sive experiments we made, including evaluation based on external, internal and
rough metrics and Section 4 draws the conclusions of this paper and presents
potential future work.

2. Rough sets clustering

Rough sets [28] represent an effective methodology for addressing data
uncertainty and vagueness, without the need of membership functions (which
could be hard to build) like in fuzzy set theory. Employing an equivalence
relation R within a dataset U , rough set theory proposes a mechanism to
approximate uncertain subsets X ⊆ U via two distinct and precise sets: the
lower and upper approximations. The lower approximation is comprised of
elements that are surely inX and it is defined as R↓(X) = {x ∈ U : [x]R ⊆ X},
where [x]R represents the equivalence class of x under R. Conversely, the
upper approximation includes elements that possibly belong to X, defined
as R↑(X) = {x ∈ U : [x]R ∩ X ̸= ∅}. The boundary region, delineated as
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BndR(X) = R↑(X) − R↓(X), consists of objects that cannot be definitively
classified as belonging or not belonging to the subset X. Accordingly, the
rough set of X relative to R is denoted as RS(X) = {R↓(X), R↑(X)}.

Rough sets clustering [11] uses rough sets theory to effectively group a
dataset into clusters while acknowledging the existing uncertainties and am-
biguities in data.

Definition 1. Given a dataset U (universe of discourse) and an equivalence
relation R on U , the goal of rough sets clustering is to partition U into a
set of clusters {C1, C2, . . . , Ck} such that:

• U =
⋃k

i=1Ci and Ci ∩ Cj = ∅ for i ̸= j.
• Each cluster Ci is represented by its lower and upper approximations
(R↓(Ci), R

↑(Ci)) with respect to R.
• The boundary region for each cluster Ci is given by BndR(Ci) =
R↑(Ci)−R↓(Ci).

In the context of clustering: (1) objects in the lower approximation of a
cluster definitively belong to that cluster; (2) objects in the upper approxima-
tion might belong to the cluster (3) objects in the boundary region of a cluster
may belong to the boundary regions of other clusters.

In Algorithm 1 we show an overview of the ABARC rough sets clustering
algorithm from [11].

Algorithm 1 Rough Sets Clustering

Require: X (dataset), imax (number of trials), λ (similarity limit)
1: Initialize AG (set of agents) with one agent for each instance in X.
2: For each agent in AG, assign it to a unique cluster.
3: for i = 1 to imax do
4: for each agentk in AG do
5: Find a similar agent (sak) using a similarity threshold λ.
6: if sak is found then
7: Move agentk to the cluster of sak.
8: end if
9: end for

10: end for
11: for each cluster representative Rk do
12: Find similar clusters based on a rough similarity limit.
13: Update and unify clusters based on similarity.
14: end for
15: Handle outliers by assigning them to the closest cluster.
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The algorithm receives a dataset X, along with a maximum trial limit imax
and a similarity threshold λ, as inputs. In this appproach, each element of
X is represented by an agent and the set of all agents is denoted with AG.
Initially, every agent is allocated to a distinct cluster, leading to a total of n
clusters corresponding to n agents.

Iteratively, up to imax rounds, the algorithm refines the clustering structure
by allowing each agent agentk to seek peers within the similarity boundary set
by λ. Upon identifying a similar agent sak, agentk relocates to sak’s cluster,
thus similar agents are grouped together.

Based on the representative of each cluster, the algorithm checks the simi-
larity among clusters through these representatives. If any clusters are similar,
they are merged into a unified cluster. This step ensures that clusters that
are close to each other or have significant overlap can be combined to form a
more cohesive and meaningful cluster. It is possible for a representative to be
similar to more than one other cluster representative in which case the corre-
sponding data (rough instances) will be treated as it would belong to several
clusters.

An optional phase addresses outliers - agents that do not seem to fit into
any other cluster - by assigning them to the nearest cluster, thus ensuring that
all data points are included in a cluster.

3. Experimental evaluation

In this section we calculate various external (Section 3.1), internal (Section
3.2), as well as rough (Section 3.3) metrics as we compare the ABARC ap-
proach with several other algorithms in the literature. The ABARC algorithm
is compared with other approaches in three scenarios: including all instances,
eliminating only outliers and eliminating both outliers and rough instances
(i.e. eliminating all hybrid data).

The experiments are performed on the following datasets: Iris [8], Seeds [18],
and Wine [9]. These datasets have been chosen primarily for benchmarking
purposes and, secondly, because they present challenges such as the presence
of outliers and instances that are not linearly separable, which makes them
suitable for applying the ABARC algorithm.

3.1. External evaluation metrics.

3.1.1. Metrics.

• Accuracy - in a clustering context, it represents the percentage of
instances that were correctly predicted out of all instances
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• Precision - focuses on how many predicted instances were classified
correctly for a given class:

Precision =
true positives

true positives+ false positives

• Recall - focuses on how many actual instances were predicted cor-
rectly for a given class:

Recall =
true positives

true positives+ false negatives

• F1-Score - incorporates both precision and recall using harmonic
mean (thus punishing extreme values) with even weights, this metric
is also for a given class:

F1 = 2 ∗ Precision ∗Recall

Precision+Recall

• Macro F1-Score - combines the F1 Score from each class using arith-
metic mean (this can be applied to precision and recall metrics too):

Macro F1 =
1

|C|
∗
∑
c∈C

F1c

where C is the set of classes, and c is a class
• Weighted Average F1-Score - same as Macro F1-Score but with class
sizes used as weights (again this can be used for precision and recall
too):

Weighted Average F1 =
1

|C|
∗
∑
c∈C

|c| ∗ F1c

• Micro F1-Score (Accuracy) - to calculate this we take all the samples
together and compute precision and recall, and then the F1 Score. In
cases where the number of predicted instances is equal to the actual
instances, we will have the following equation hold:

Micro Precision = Micro Recall = Micro F1 = Accuracy

• Kappa Score - when talking about Kappa Score we need to introduce
new terms: Agree which is the proportion of correctly predicted
instance over all instances (similar to Accuracy) and Chance Agree
which is computed from the probabilities of predicting a class or
being in a class, formally:

Agree =
1

N
∗
∑
c∈C

|predictedc ∩ actualc|
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Table 1. Overall supervised metrics for the Iris dataset.

Case Study Class Instances Prec Recall F1 Kappa
Clusters with hybrids Macro 163 91.19 91.19 91.15 -

Weighted 163 90.8 90.88 90.8 -
Micro 163 90.798 90.798 90.798 -
Kappa 163 - - - 86.2

Clusters without outliers Macro 152 90.64 90.74 90.64 -
Weighted 152 90.13 90.21 90.12 -
Micro 152 90.132 90.132 90.132 -
Kappa 152 - - - 85.1

Clusters without hybrids Macro 126 98.35 98.35 98.35 -
Weighted 126 98.41 98.41 98.41 -
Micro 126 98.413 98.413 98.413 -
Kappa 126 - - - 97.6

where N is the total number of instances, predictedc is the set of all
instances predicted in class c, and actualc is the set of all instances
actually being in class c.

Chance Agree =
∑
c∈C

|predictedc|
N

∗ |actualc|
N

Kappa Score =
Agree− Chance Agree

1− Chance Agree

3.1.2. Results and discussion.

Iris dataset. Analyzing the results from Table 1 we can see that outliers
make no real difference, but when we eliminate rough instances we get much
better results on all metrics.

We have also compared our metrics to some related work. We have used as
a comparison the following results from [36]: KMEA, WKME, EWKM, ESSC,
AFKM, SC, SSC-MP, ERKM; and from [29]: Bayes Network Classifier, J48,
Random Forest, OneR. In Table 2 we can see that the F1-Score for the two
ABARC cases is better than all of the others, but the Kappa Score is better
only after removing hybrids.

We have also compared to algorithms from Scikit learn [38] like Logistic
Regression (LR), Linear Discriminant Analysis (LDA), K-Nearest Neighbours
(KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), Support Vector
Machines (SVM). From Table 3 we can again conclude that removing hybrids
is essential to have the best values for all the metrics.



A COMPREHENSIVE EVALUATION OF ROUGH SETS CLUSTERING 47

Table 2. Comparison with related work on Iris dataset.

Algorithm Precision Recall F1-Score Kappa Score
KMEA [23] 81.2
WKME [13] 79.8
EWKM [15] 82.6
ESSC [6] 84.8
AFKM [1] 81.6
SC [31] 47.2

SSC-MP [32] 76.7
ERKM [36] 90.2

Bayes Network Classifier 89
J48 94

Random Forest 93
OneR 91

ABARC /w hybrids 91.2 91.2 91.2 86.2
ABARC /wo hybrids 98.4 98.4 98.4 97.6

Table 3. Comparison with Scikit learn on Iris dataset.

Algorithm Precision Recall F1-Score Kappa Score
LR 95.4 95.2 95.2 92.9
LDA 98.2 97.9 97.9 96.9
KNN 97.8 97.8 97.7 97.0
DT 95.3 95.1 95.1 92.9
GNB 95.7 95.5 95.5 92.8
SVM 97.8 97.7 97.7 96.9

ABARC /w hybrids 91.2 91.2 91.2 86.2
ABARC /wo hybrids 98.4 98.4 98.4 97.6

Seeds dataset. When taking a look in Table 4, the overall metrics show small
difference when outliers are removed, and eliminating rough instances does not
seem to make any difference. A potential reason why hybrid data might have
such a small impact is the reduced number of outliers and rough instances.

We have used the same algorithm from Scikit learn. When taking a look on
Table 5 we can observe that our approach is nowhere near being the best. This
can once more happen because the algorithm’s performance is not affected by
rough instances and outliers.

Wine dataset. Wine is one of the datasets where hybrids make difference.
The idea can be observed when we take a look at the overall metrics in Table
6: outliers improve metrics, but rough instances are the ones that make the
real difference bumping all metrics to above 99%.
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Table 4. Overall supervised metrics for the Seeds dataset.

Case Study Class Instances Prec Recall F1 Kappa
Clusters with hybrids Macro 213 91.52 91.61 91.5 -

Weighted 213 91.55 91.84 91.63 -
Micro 213 91.549 91.549 91.549 -
Kappa 213 - - - 87.3

Clusters without outliers Macro 192 91.13 91.59 91.28 -
Weighted 192 91.15 91.42 91.21 -
Micro 192 91.146 91.146 91.146 -
Kappa 192 - - - 86.7

Clusters without hybrids Macro 178 91.46 92.23 91.77 -
Weighted 178 91.57 91.79 91.62 -
Micro 178 91.573 91.573 91.573 -
Kappa 178 - - - 87.2

Table 5. Comparison with Scikit learn on Seeds dataset.

Algorithm Precision Recall F1-Score Kappa Score
LR 90.0 90.2 89.5 84.9
LDA 95.9 96.2 96.0 94.2
KNN 91.7 92.0 91.4 87.7
DT 88.3 88.5 88.1 82.7
GNB 89.7 90.1 89.5 84.9
SVM 92.6 92.7 92.5 89.2

ABARC /w hybrids 91.5 91.6 91.5 87.3
ABARC /wo hybrids 91.5 92.2 91.8 87.2

Table 6. Overall supervised metrics for the Wine dataset.

Case Study Class Instances Prec Recall F1 Kappa
Clusters with hybrids Macro 186 93.2 94.79 93.59 -

Weighted 186 93.55 94.3 93.51 -
Micro 186 93.548 93.548 93.548 -
Kappa 186 - - - 90.2

Clusters without outliers Macro 165 94.23 95.31 94.32 -
Weighted 165 94.55 95.31 94.49 -
Micro 165 94.545 94.545 94.545 -
Kappa 165 - - - 91.8

Clusters without hybrids Macro 148 99.24 99.29 99.26 -
Weighted 148 99.32 99.34 99.32 -
Micro 148 99.324 99.324 99.324 -
Kappa 148 - - - 99.0

We have done the one of the comparisons from Iris on the Wine dataset
too, illustrated in Table 7. As there is only one metric interpreting the results
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Table 7. Comparison with related work on Wine dataset.

Algorithm F1-Score
KMEA [23] 94.6
WKME [13] 94.8
EWKM [15] 90.4
ESSC [6] 95.0
AFKM [1] 94.3
SC [31] 86.9

SSC-MP [32] 58.4
ERKM [36] 89.9

ABARC /w hybrids 93.6
ABARC /wo hybrids 99.3

Table 8. Comparison with Scikit learn on Wine dataset.

Algorithm Precision Recall F1-Score Kappa Score
LR 95.0 96.1 95.3 93.1
LDA 97.6 97.8 97.6 96.5
KNN 66.4 68.2 65.9 51.5
DT 89.6 89.2 89.2 84.3
GNB 97.5 97.8 97.6 96.5
SVM 60.7 39.5 30.4 9.5

ABARC /w hybrids 93.2 94.8 93.6 90.2
ABARC /wo hybrids 99.2 99.3 99.3 99.0

is trivial and we can see the same tendency: ABARC with hybrids has good
performance but not good enough to be better than all of the other related
work, but when we remove hybrids the value becomes almost perfect, thus
being the best of all.

We have the comparison with Scikit learn algorithms on the Wine dataset
too. Table 8 shows that the performance of ABARC is comparable to that
of the related work, albeit slightly lower. Nevertheless, the advantage of our
approach is that it can also detect and isolate hybrid data.

3.2. Internal evaluation metrics.

3.2.1. Metrics.

• Purity - a measure of the extent to which clusters contain a single
class:

Purity =
1

N

∑
k∈K

maxc∈C ack

where N is the number of instances, K is the set of clusters, and C
is the set of classes, and ack = |c ∩ k|
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• Entropy - a measure of uncertainty

Entropy =
∑
k∈K

|k|
N

∗ (−
∑
c∈C

P (ack) ∗ log2 P (ack))

where

P (ack) =
ack
|c|

=
|c ∩ k|
|c|

• V-Measure - is again based on entropy but considers homogeneity
and completeness with different importance. Homogeneity means
that a clustering must assign only those datapoints that are members
of a single class to a single cluster, completeness is symmetrical to
homogeneity: a clustering must assign all of those datapoints that are
members of a single class to a single cluster. Formally we calculate
homogeneity, completeness and V-Measure as:

H(C|K) = −
∑
k∈K

∑
c∈C

ack
N

∗ log ack∑
c∈C ack

H(C,K) = −
∑
c∈C

∑
k∈K ack

|C|
log

∑
k∈K ack

|C|

h =

{
1 H(C,K) = 0

1− H(C|K)
H(C,K) otherwise

H(K|C) = −
∑
c∈C

∑
k∈K

ack
N

∗ log ack∑
k∈K ack

H(K,C) = −
∑
k∈K

∑
c∈C ack

|C|
log

∑
c∈C ack

|C|

c =

{
1 H(K,C) = 0

1− H(K|C)
H(K,C) otherwise

Vβ =
(1 + β) ∗ h ∗ c

β ∗ h+ c

3.2.2. Results and discussion. Considering the results from Table 9 we can
observe that on Iris the accuracy and purity drops a bit as we eliminate out-
liers and rough instances, but the entropy and the V-Measure, after dropping
both of them, are significantly better, which makes us assume that outliers
and rough instances do not really affect homogeneity but they affect complete-
ness. On the Seeds dataset we cannot see any real difference when eliminating
them, thus they do not affect our performance. Finally, on Wine we can see
all metrics improve, entropy and V-Measure improve significantly, so on this
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Table 9. Unsupervised performance measurements for the
Iris, Seeds and Wine datasets.

Case Study Inst Acc Entropy Purity V

Ir
is

Clusters with hybrids 150 98.66% 0.0803 0.987 0.733
Clusters without outliers 139 98.56% 0.0847 0.986 0.717

Clusters without outliers and rough 126 98.41% 0.0204 0.984 0.932

S
e
e
d
s Clusters with hybrids 210 92.857% 0.0839 0.929 0.721

Clusters without outliers 190 92.105% 0.0863 0.921 0.711
Clusters without outliers and rough 178 91.573% 0.0829 0.916 0.719

W
in
e Clusters with hybrids 178 97.753% 0.0569 0.978 0.8

Clusters without outliers 157 99.363% 0.0418 0.994 0.854
Clusters without outliers and rough 148 99.324% 0.0088 0.993 0.97

dataset eliminating them makes our results almost perfect regardless of the
metric used.

To compare with some related work we used the following results:

• KMEA, WKME, EWKM, ESSC, AFKM, SC, SSC-MP, ERKM [36]
• Bayes Network Classifier, J48, Random Forest, OneR [29]
• KM, EWKM, AFKM, FCM, SCAD, Entropy-based Variable Feature
Weighted Fuzzy k-Means (EVFWFKM) [30]

• UFT-k-means, k-prototypes, Improved k-prototypes, KL-FCM-GM
[34]

These are used in Table 10, and there can be multiple entries for a single
algorithm (ex. EWKM) as they are taken from different results probably
run using different configuration. The first comparison from Table 10 again
suggests that ABARC has the performance, this time on Seeds too. Although
both the compared metrics are the best in our approach, on the dataset Iris
and Seeds the accuracy is actually better with hybrids than without them
(this can happen when hybrid instances are accidentally put in the cluster
specified by the official documentation), but the entropy values are always
better without hybrids. Other algorithms does not seem to be even close to
the values reported by ABARC in any of the cases.

When we compare to the Scikit learn algorithms we have the same results
as for the supervised metrics. They are much better on Seeds dataset, but our
approach especially without hybrids has much better performance on Iris and
Wine dataset from both metrics’ point of view.

3.3. Rough evaluation metrics.

3.3.1. Metrics. We have also evaluated the ABARC algorithm against the
following rough indices from [26]:
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Table 10. Unsupervised comparison with related work for the
Iris, Seeds and Wine datasets.

Dataset Algorithm Accuracy Entropy

Ir
is

KMEA [23] 80.54%
WKME [13] 78.47%
EWKM [15] 82.09%
ESSC [6] 84.66%
AFKM [1] 81.27%
SC [31] 80.66%

SSC-MP [32] 71.20%
ERKM [36] 90.36%

Bayes Network Classifier 92.66%
J48 96%

Random Forest 95.33%
OneR 94%

KM [23] 88.67%
EWKM [15] 89.78%
AFKM [1] 90.67% 0.299
FCM [3] 82.67% 0.395

SCAD [10] 88.67% 0.395
EVFWFKM [30] 92.67% 0.294

ABARC /w hybrids 98.66% 0.08
ABARC /wo hybrids 98.41% 0.02

S
e
e
d
s

UFT-k-means 89.05%
k-prototypes 86.67%

Improved k-prototypes 84.76%
KL-FCM-GM 57.62%

ABARC /w hybrids 92.857% 0.084
ABARC /wo hybrids 91.573% 0.083

W
in
e

KMEA [23] 94.43%
WKME [13] 94.71%
EWKM [15] 90.24%
ESSC [6] 95.06%
AFKM [1] 93.99%
SC [31] 87.07%

SSC-MP [32] 58.65%
ERKM [36] 90.16%

ABARC /w hybrids 97.753% 0.057
ABARC /wo hybrids 99.324% 0.009

(1) Average Accuracy, α index - it is the average of the ratio of the
number of objects in lower approximation to that in upper approxi-
mation of each cluster, it captures the average degree of completeness
of knowledge about all clusters: α = 1

|K|
∑

k∈K
ω∗Ak

ω∗Ak+(1−ω)∗Bk
where

Ak is the size of the lower approximation of cluster k, Bk is the size
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Table 11. Unsupervised comparison with Scikit learn algo-
rithms for the Iris, Seeds and Wine datasets.

Dataset Algorithm Accuracy V-Measure

Ir
is

LR 94.67 86.5
LDA 97.33 91.7
KNN 96.67 89.9
DT 95.33 86.7
GNB 95.33 87.2
SVM 96.00 88.6

ABARC /w hybrids 98.66 73.3
ABARC /wo hybrids 98.41 93.2

S
e
e
d
s

LR 90.00 73.6
LDA 96.19 88.1
KNN 91.90 77.3
DT 88.10 67.7
GNB 90.00 73.4
SVM 92.86 78.5

ABARC /w hybrids 92.857 72.1
ABARC /wo hybrids 91.573 71.9

W
in
e

LR 95.51 85.1
LDA 98.32 94.2
KNN 69.70 39.8
DT 90.46 75.9
GNB 96.59 90.4
SVM 38.19 9.7

ABARC /w hybrids 97.753 80.0
ABARC /wo hybrids 99.324 97.0

of the boundary region of cluster k and ω is the weight of lower
approximation (we used 0.6)

(2) Average Roughness, ρ index - represents the average degree of in-
completeness of knowledge about all clusters: ρ = 1− α

(3) Accuracy of Approximation, α∗ index - it captures the exactness of

approximate clustering: α∗ =
∑

k∈K ω∗Ak∑
k∈K ω∗Ak+(1−ω)∗Bk

(4) Quality of Approximation, γ index - it is the ratio of the total number
of objects in lower approximations of all clusters to the cardinality
of the universe of discourse: γ = 1

N

∑
k∈K Ak

3.3.2. Results and discussion. We have compared our rough indices results
with the ones reported in the book in Table 12 (only on Iris andWine datasets).
From the comparison we can say that our approach matches the algorithms
discussed in the related work on the Iris dataset. The first three indices are
slightly lower but the last one is significantly better, probably meaning that
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Table 12. Rough indices for the Iris, Seeds and Wine dataset.

Dataset Iris Wine
Algorithm α Index ρ Index α∗ Index γ Index α Index ρ Index α∗ Index γ Index

RFCMMBP 0.999971 0.000029 0.999963 0.625000 0.8387 0.1613 0.9251 0.5000
RFCM 0.999986 0.000014 0.999988 0.800000 0.8918 0.1082 0.9259 0.8275
RPCM 0.999983 0.000017 0.999985 0.553333 0.8433 0.1567 0.9306 0.6255
RFPCM 0.999987 0.000013 0.999989 0.766667 0.9012 0.0988 0.9258 0.7234
ABARC 0.999980 0.000020 0.999981 0.913333 0.9989 0.0011 0.9989 0.9438

overall our rough score is better but it is slightly worse on one of the clusters.
On the Wine dataset all indices are the best in the ABARC algorithm’s case,
meaning that we have better rough clustering from all points of view.

4. Conclusions and future work

In this paper, we have carried out a comprehensive evaluation of the Agent
BAsed Rough sets Clustering (ABARC) algorithm, which is a new approach
for clustering in uncertain environments. Experiments were done using stan-
dard datasets and against multiple supervised and unsupervised methods too.
Besides this evaluation, we also analyze the impact of several internal and
external metrics, especially in the context of unpredictability.

The results suggest that removing hybrids increases the performance of the
ABARC algorithm. Compared to other approaches on Iris and Wine datasets
the algorithm outperforms all the related approaches with respect to almost
any of the considered metrics. This outcome emphasises the importance of
hybrid data detection and hence the need of applying algorithms that are
tailored to uncertainty driven environments.

As a future work we plan to analyze rough instances and outliers even
more in order to potentially gain extra relevant information about the given
datasets as well as work on applying ABARC in other domains, like software
engineering, biology, chemistry or even medicine.
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Abstract. Social network analysis is a rapidly evolving research area hav-
ing several real-life application areas, e.g. digital marketing, epidemiology,
spread of misinformation. Influence maximization aims to select a subset
of nodes in such manner that the information propagated over the network
is maximized. Competitive influence maximization, which describes the
phenomena of multiple actors competing for resources within the same in-
frastructure, can be solved with a greedy approach selecting the seed nodes
utilizing the influence strength between nodes. Recently, deep reinforce-
ment learning methods were applied for estimating the influence strength.
We train a controller with reinforcement learning for selecting a node list
of given length as the initial seed set for the information spread. Our
experiments show that deep Q-learning methods are suitable to analyze
the competitive influence maximization on trust and distrust based social
networks.

1. Introduction

Monitoring the information spread in social networks is beneficial for public
opinion analysis, evaluating and marketing strategies. The influence maxi-
mization [3] problem aims to maximize the information coverage, while mini-
mizing the cost associated with the degree of information spread. Competitive
influence maximization [1] refers to the optimization problem, when multiple
entities operate on the same social network and each of them attempts to
maximize the information spread in parallel. In viral marketing, multiple
companies often target the same audience with similar products. The goal of
each individual company is to maximize their own revenue and persuade the
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most possible individuals within a social network to choose their product over
a competitor’s.

Reinforcement learning is a computational approach to learn a specific task
based on an agent-environment interaction. The agent’s learning process is
guided by a reward received: successful steps towards the completion of a
predefined task are associated with positive feedback. Reinforcement learning
has been applied to several real-world inspired optimization problems, such
as robotics, epidemiology, scheduling and routing problems. Moreover, the
reinforcement learning setting can be extended to the influence maximization
problem [2, 6, 11].

The present work argues that deep reinforcement learning is suitable for
constructing initial seed sets for competitive influence maximization on social
networks displaying trust-distrust relationships. Two distinct mechanisms are
analyzed to construct initial seed sets for two competing actors: joint- and it-
erative seed selection. The effectiveness of possible seed sets is compared based
on the number of activated nodes after simulating polarity related independent
cascade on trust-distrust networks.

This article is organized as follows. In Section 2, the polarity related
competitive influence maximization problem is described. Section 3 presents
the reinforcement learning setting and a deep reinforcement learning method,
namely Deep Q-network. The conducted experiments and results are shown
in Section 5. Finally, our conclusions and opportunities for improvement are
summarized in Section 6.

2. Influence maximization

Influence maximization [3] targets the optimization of information spread
in social networks starting from a set of source nodes. Let K denote the maxi-
mum number of nodes in the seed set. In [3] the authors also proposed a greedy
baseline algorithm under the two main existing diffusion models, namely Inde-
pendent Cascade and Linear Thresholds. The influence maximization problem
is NP-hard [3], therefore, in addition to approaches proposed specifically opti-
mize influence maximization, various soft computing methods can be applied
to alleviate the computational requirements e.g., reinforcement learning.

Carnes et al. extended the independent cascade model to the competitive
scenario, where actors with opposing interests are present, introducing two
influence spread mechanisms: the distance based and the wave propagation
model. Both models are suitable for constructing a seed set greedily to address
the problem of competitive influence maximization (CIM).

Conventional influence maximization methods are biased simulating influ-
ence spread groups with different attributes [7]. Thus, the balanced influence
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maximization was proposed to examine influence spread in attributed social
networks [7]. The baseline algorithm for the balanced influence maximiza-
tion problem is Attribute-based Reverse Influence Sampling algorithm, that
achieves the efficiency of conventional Influence Maximization methods and
manages to conserve the initial attribute distribution of the sampled social
network [7].

In [2] the authors proposed a reinforcement learning framework regarding
influence maximization problem in random graphs. For the selection of ini-
tial source points for the information cascade a Markov Decision Process is
proposed. Markov Decision Processes may be solved by applying single agent
reinforcement learning [10]. The autonomous agent selects the source nodes to
broadcast an initial message, policy improvement is applied to approximate the
action-value function. The reward received for selecting certain source nodes
shows the degree of information dissemination in the network after simulating
information cascade with a finite time-horizon.

Recently, hierarchical generative embedding was implemented with the goal
to map the network nodes to a lower-dimensional embedding space [11]. The
learned node representation is utilized for estimating the influence strength
between two nodes and the most influential nodes are selected greedily in
regard to the learned representation. The method is evaluated on various
social networks based on real-world data, such as citation networks [8].

In [6] deep reinforcement learning was studied to construct an estimator to
determine the expected influence of nodes. Network embedding is applied to
construct a vector representation of nodes, the obtained vectors are utilized as
an input for a deep Q-network [9] that approximates the expected influence.
The seed set optimizing the influence spread is constructed by selecting nodes
with the objective of maximizing the expected influence. The node selection
is performed in one iteration, all embeddings are computed and the top k
candidates are appointed as the seed set.

2.1. Polarity related influence maximization. The influence maximiza-
tion problem formalized in [3] features social networks having a single type
of relation between individuals. Polarity related influence maximization [5]
operates taking into account two opposing type of relationships. Methods ad-
dressing influence maximization can be extended to solve the polarity related
influence maximization by applying polarity related independent cascade [5].

In the competitive influence maximization setting, where two distinct actors
attempt to influence vertices in of the same network, multiple node activation
statuses occur. A vertex is considered inactive if none of the actors managed
to influence them yet. In the case of activated nodes, two additional states
are distinguished representing the polarity of activated nodes. Furthermore,
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Figure 1. Example for polarized activation of nodes. The
green node is marked as positive activating its neighbors fol-
lowing outgoing edges, the neighbors that trust the starting
node (black edges) turn positive, while nodes that distrusted
the starting node (orange edges) become negative

the polarity of nodes also marks the actor which influenced the current node.
The vertices activated by the reinforcement learning agent are called positive
vertices, whereas the vertices activated by the adversary are called negative
ones.

We construct a seed set by selecting a k number of nodes to be activated in
the beginning of the simulation. Then, a polarized node activation is simulated
(see Figure 1) in accordance with [5]: if a given vertex would activate one of
its’ neighbors, the neighbor will choose for itself: (i) the same sign (positive
or negative) if the edge between the source node and the activated neighbor
is positive, or (ii) opposite sign if the edge between the two nodes is negative.
If an n node is activated in a simulation step t, n tries to activate its’ inactive
neighbors in the next time step t + 1. In following time steps starting from
t+2, n no longer broadcast information toward its’ inactive neighbors and no
longer activates individuals in the social network. In this model, each node
will be activated only once and will preserve its positive or negative status
over the simulation.

3. Reinforcement learning

Reinforcement learning (RL) trains an action policy to optimize the behav-
ior of an agents in an observable or partially observable environment [10]. Pre-
vious experiences of agent-environment interaction characterized by a reward
signal are utilized to optimize solving a predefined task. The optimization
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problem of training an RL agent can be formalized as a Markov Decision Pro-
cess (MDP) [10]. The {S,A, p,R, γ} tuple is an MDP if the Markov property
holds true, which states that the immediate reward r and the agent’s next
state si+1 is defined by the the previous state st and the at action taken:

p(s′, r | s, a) = Pr{st+1 = s′, Rt+1 = r | st = s, at = a}

Optimal action selection policies may utilize action-value estimators to as-
sess the potential benefits of selecting an action a in a given state S. We
denote with Q(s, a) the pay-off for the agent for taking action a in the s state.

Deep Q-Networks (DQN) were introduced in [9] utilizing neural networks to
approximate the associated gain for possible state-action pairs. The action-
value function for a state-action pair – denoted by Q(s, a) – measures the
goodness of choosing the a action over any other available action in state s.
The optimal policy receiving a state as input is constructed as a greedy action
selector regarding the estimated Q-values. The experience replay mechanism
is implemented to generate training batches for the Q-network. The agent’s
interaction with the environment is saved into a buffer. In each training step,
Q-values are calculated for st, at, st+1, rt+1 state transitions drawn from the
experience buffer. The weights of the neural network are updated with the
objective to minimize the temporal difference [10] calculated for the current
batch of state transitions. The temporal difference error is computed using
a target network, a periodic backup of the trained Q-network. The target
network is robust in regard to abrupt changes of the Q-values, hence, a more
stable training approach is obtained.

4. Proposed methods

Several approaches exist for interpreting the influence maximization as a
reinforcement learning problem. With the scope of formalizing the influence
maximization as a Markov Decision Process, which may be solved by applying
deep Q-learning methods, we describe two models.

4.0.1. Joint seed selection. The activation states for the vertices of the social
network(s) are encoded with integers, establishing the state representation of
the reinforcement learning problem. Inactivated nodes are labelled as 0, ac-
tivated and positive nodes get 1, activated and negative nodes get −1 labels,
respectively. The seed set for the first agent producing positively activated
nodes is selected as one action of the RL agent. The possible seed sets are
obtained based on the social network infrastructure before the deep Q-learning
takes place. The episode consists of 1 iteration: both the agent and its’ ad-
versary select their seed set, given the independent cascade model, the degree
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(a) Selecting 3 seed nodes (red arrows) (b) Activation status of the nodes

Figure 2. Select 3 seed nodes with joint seed selection. Red
arrows point to seed nodes that activate their neighbors based
on outgoing edges: positive edges preserve the sign of activa-
tion, while activation is switched when following negative edges

of information dissemination is obtained, and the reward is the number of
activated and positive nodes.

Figure 2 illustrates the joint seed selection in a directed graph that has
positive and negative edges. The budget allocated for the seed set is 3 and
the seed nodes will be marked as positive. The RL agent receives as input
the activation statuses of the network nodes and selects a 3 length list of seed
nodes generated from all nodes present in the network (Fig. 2a). Neighbors
are activated simultaneously according to the polarized independent cascade
model described in Section 2.1. Following the outgoing edges of the seed nodes,
inactive nodes are activated positive edges leading to positive neighbors, while
negative edges result in negative neighbors (Fig. 2b). Then, the activated
neighbors may activate the remaining inactive neighbors. The neighbors of
the seed nodes do not have outgoing edges that point to inactive nodes (see
Fig. 2b), thus, the simulation of polarized independent cascade is finished. The
RL agent receives the total number of activated and positive nodes, which is
8 in this case.

4.0.2. Iterative seed selection. The state representation and the encoding of
the nodes is identical as described in Section 4.0.1. However, the initial seed
set is assembled in an iterative manner. The reinforcement learning episode
consists of a maximum k number of iterations, in each iteration the actors
select an inactivated node to be added to their respective seed sets. The
immediate reward received by the agents in each iteration is going to be the
change in the number of activated nodes.
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(a) Select the first seed
node

(b) Activate the neigh-
bors of the first seed node

(c) Add the second seed
node

(d) Inactive neighbors
are activated

(e) Select the last seed
node

(f) Activate the neigh-
bors of the last seed nodes

Figure 3. Selecting 3 nodes for a seed set in an iterative man-
ner in a directed graph with positive and negative edges. Red
arrows point to seed nodes that activate their neighbors based
on outgoing edges: positive edges preserve the sign of activa-
tion, while activation is switched when following negative edges

Figure 3 illustrates the iterative seed selection process in a directed graph
that has positive and negative labels associated with each edge with a budget
of k = 3. The seed set is initialized as empty at the beginning. Each node
is selected independently, after activating the new seed node and marking the
seed node as positive, a polarized independent cascade step is performed. The
first seed node shown on Figure 3a activates one of its neighbors as positive,
while the other neighbor becomes negative (Figure 3b). After updating the
activation statuses, the RL agent receives as a reward the number of positive
nodes including the seed node; the reward for the first seed node is 2. The
second seed node is chosen from the inactive nodes (Figure 3c) and attempts
to activate its neighbors. Previously activated nodes remain with the original
activation status indifferent to their neighbors becoming activated, as shown
on Figure 3d, the first seed node remains positive although it is connected
to another positive node. The reward associated to selecting the second seed
node for the given activation state is 4. Finally, the third seed node is selected
(Fig. 3e), the 2 neighbors are newly activated (Fig. 3f) yielding a reward of
2.
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5. Experiments

5.1. Data. We conducted our experiments on trust and distrust based so-
cial networks constructed from user relations on the epinions.com consumer
review site [4]. Users from the website are considered nodes and nodes are
connected (by edges) if the corresponding users trust or distrust one another
in the context of the review site. Weights assigned to edges detail the kinship
between the respective users: 1 encodes trust between users, while −1 refers to
distrust. For modelling trust relations within users, directed graphs are pre-
ferred because trust (or distrust) between users is not necessarily symmetrical,
i.e. user A trusts user B, however user B does not trust user A.

The social network constructed from epinions.com contains over 100000
nodes and 800000 edges.[4]. Analysis of the constructed social network
showed that the probability of edges being positive is higher for nodes with
a larger number of neighbors, while negative edges tend to act as bridges
between positive clusters [4]. The original network was sub-sampled to ex-
periment with deep Q-learning methods alleviating computational demands
needed for processing large networks and assessing scalability of reinforcement
learning approaches.

Weakly connected graphs are generated by selecting nodes from the original
network using the following method. First, an initial node is chosen from the
original network generated by a uniform distribution. A neighbor-pool that
will contain the nodes connected to the sample graph nodes but not in the
sample graph is initialized as an empty set. Whenever a new node is added to
the sub-graph, the neighbor-pool is extended with all the nodes connected to
the selected node not already in the pool, both incoming and outgoing edges
are considered. In the following steps, nodes are selected from the neighbor-
pool by a uniform random distribution and added to the sub-sample graph.
The sampling terminates when the neighbor-pool does not have any more
candidates, or the size of the sub-sample network reaches a certain threshold.
Small-scale sub-networks were obtained by selecting an upper limit of 17, 23
and 32 number of nodes within a sample graph. Medium scale graphs were
generated with 93 and 340 nodes, respectively.

5.2. Experimental setup. Two distinct reinforcement learning models are
described to address the competitive influence maximization problem. Given
the competitive nature of the optimization problem, two actors are distin-
guished to operate on the social network. We study optimal (policy) config-
urations for the actors separately, the currently analyzed actor is going to be
referred to as the agent and RL methods are applied for generating possible
initial seed sets for the selected actor. The two competing actors determine

epinions.com
epinions.com
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Graph
Number of Number of

Kpositive
Number of Number of

nodes edges positive
nodes

negative
nodes

G-17 17 24 3 7 2
G-23 23 22 4 9 1
G-32 32 55 4 13 2

Table 1. Selecting the starting nodes with joint seed selection
by a controller trained with DQN on small trust-distrust graphs

(a) G-17 (b) G-23 (c) G-32

Figure 4. Activation status of nodes in small trust-distrust
networks determined by the DQN approach

their initial seed sets simultaneously, then the influence spread is simulated
under the competitive independent cascade [1] diffusion model. The actors
take turns to activate nodes within the network: the vertices activated by the
first actor are marked as positive, while vertices activated by the second actor
are labeled negative.

For the sake of simplicity, the social network is assumed to be known during
our experiments and only the policy generating the initial seed set is optimized.
For different graph instances, new policies are trained using deep Q-learning.
Training with a fixed social network architecture aims to reduce the magnitude
of the optimization problem.

5.3. Results. In this paper, we evaluated deep Q-networks (DQN, [9]) ap-
proach for selecting initial seed sets for the competitive influence maximization
problem [1] in signed trust based social networks. Two distinct reinforcement
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Graph Number of
nodes

Number of
edges

Kpositive Number of
positive
nodes

Number of
negative
nodes

G-93 93 444 1 68 12
G-340 340 4958 1 222 86

Table 2. Selecting the starting nodes with iterative seed selec-
tion by a controller trained with DQN on trust-distrust graphs

(a) G-93 (b) G-340

Figure 5. Activation status of nodes in medium size trust-
distrust networks determined by the DQN approach

learning models were applied to formalize the influence maximization problem
and construct the solution space.

Joint seed selection (see Section 4.0.1) is suitable to operate on trust-distrust
based social networks with limited number of nodes. In Table 1, 3 distinct
social networks are presented alongside with the seed sets for the influence
maximization problem determined by the DQN method. The inactive, posi-
tively, and negatively activated nodes are determined by following polarity re-
lated independent cascade [5]. The structure of the evaluated small networks
and the activation of nodes given the seed sets determined by the controller
trained with DQN are shown on Figure 4.

When applying joint seed selection, the dimensions of the action space in-
crease exponentially with the number of vertices in the social network. The
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memory consumption and required execution time can be reduced by deter-
mining the elements of the seed node set in an iterative manner (see Section
4.0.2). Table 2 summarizes the quantitative characteristics of training with
DQN for the iterative selection of seed nodes in trust-distrust social networks
in the context of competitive influence maximization. In case of the larger
sample networks, the distribution of inactive, positively and negatively acti-
vated nodes for the evaluated social networks is shown on Figure 5.

5.4. Discussion. Experimental results show that deep reinforcement learning
is suitable for proposing seed sets for the competitive influence maximization
problem on polarized networks. In this paper, two actors operate on social
networks of various sizes that describe trust-based relationships. At the eval-
uation step, the same policy is used to select seed sets for both actors. The
nodes activated by the first actor are reported as positive nodes, whereas the
nodes activated by the second actor are reported as negative nodes. The actors
select nodes for the seed set simultaneously; however, because nodes cannot
change their activation in the conducted experiments, the final activation sta-
tus of a node selected by both actors is positive. In the evaluated trust-distrust
graphs, the first actor has an advantage over the second actor, and more nodes
are positive than negative after both actors selected a seed set.

The joint seed selection described in Section 4.0.1 is feasible to determine
seed sets for the competitive influence maximization problem. The joint seed
selection method does not scale well due to the fact that the action space
increases rapidly with the budget for the seed set. Experiments show that
iterative seed selection (Section 4.0.2) can be utilized with the DQN approach
to operate on medium-scale networks. In case of the G-93 and G-340 sub-
networks, a K = 1 length seed set activates as positives a large proportion
of the network nodes (see Table 2). The original social network is observed
to contain positive clusters [4]. The occurrence of a larger number of positive
connections of nodes facilitates the information spread in the medium-scale
sub-networks.

6. Conclusions and future work

Reinforcement learning proceeds to extract meaningful information from
past agent-environment interactions. Reinforcement learning is suitable for
addressing NP-hard optimization problems, such as influence maximization.
Deep Q-Networks, a well-known reinforcement learning method, were trained
to optimize the competitive influence maximization problem on polarized net-
works. The solution space of the influence maximization problem increases
rapidly with the number of nodes and the size of the seed set. To alleviate
the impact on memory consumption and the time necessary for training of the



68 ANIKÓ KOPACZ

models several techniques can be applied, e.g. introducing a filtering step to
exclude infeasible actions, constructing the seed node set by selecting nodes
one by one. Future work includes analyzing the application areas of influence
maximization and applying network embedding methods to project the node
representation into a latent space.
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AUTOMATIC DETECTION OF VERBAL DECEPTION IN

ROMANIAN WITH ARTIFICIAL INTELLIGENCE METHODS
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Abstract. Automatic deception detection is an important task with sev-
eral applications in both direct physical human communication, as well
as in computer-mediated one. The objective of this paper is to study
the nature of deceptive language. The primary goal of this study is to
investigate deception in Romanian written communication. We created a
number of artificial intelligence models (based on Support Vector Machine,
Random Forest, and Artificial Neural Network) to detect dishonesty in a
topic-specific corpus. To assess the efficiency of the Linguistic Inquiry and
Word Count (LIWC) categories in Romanian, we conducted a comparison
between multiple text representations based on LIWC, TF-IDF, and LSA.
The results show that in the case of datasets with a common subject such as
the one we used regarding friendship, text categorization is more successful
using general text representations such as TF-IDF or LSA. The proposed
approach achieves an accuracy of the classification of 91.3%, outperform-
ing the similar approaches presented in the literature. These findings have
implications in fields like linguistics and opinion mining, where research
on this subject in languages other than English is necessary.

1. Introduction

Automated deception detection merges fields of research such as sociology,
interpersonal psychology, communication studies, philosophy, and computa-
tional models of deception detection. The recognition of a misleading way of
behaving is a task that has acquired expanding interest because of the quick
development of deception in written sources, particularly the ones from cy-
berspace. Moreover, its applications in identifying potential harm for people
and society make this challenge a relevant one and necessary to be resolved.
In general, the benefits of solving this problem are reflected in domains such as
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business, jurisprudence, law enforcement, and national security. Text-based
information of any structure, such as news articles, client surveys, political
discourses, social media contents, witnesses’ reports, and so on are at present
used in deception research as they portray the ideal context of lying in genuine
circumstances.

Considering the problem of automatic detection of deceptive language in
Romanian written texts, relatively modest efforts, if any have been made,
the spotlight being put on languages that are widely spoken such as English,
Spanish, or Italian. Most of the previous work has focused on the psychological
or social aspects of lying. They concentrated on deceiving and its relation to
the cultural dimension of individualism/collectivism and not so much on the
specificity of linguistic aspects of falsehood in Romanian.

Taking into account the introduced issue, there are various difficulties that
can be noticed. One of these is the fact that the information provided does
not present any additional data apart from the written language itself.

Researchers often take deception language as a whole, overlooking individual
highlights that may distinguish one speaker from the others, and assuming that
everyone lies in much the same way. Rather than comparing each individual
sample of misleading language to its equivalent control text, the complete
collection of ”false” testimonies is compared against the set containing ”true”
claims. It is worth noting that the fundamental disadvantage of a corpus of
”genuine” language is the difficulty in getting a sample of instances of language
in which a speaker tells the truth for the purpose of comparison. Taking
these factors into account, this study aims to analyze deception indications in
written Romanian, which is a unique area of study, that has not been explored
yet.

Because the implicit assumption about the homogeneity of language indica-
tions of deception contradicts earlier work from psychological and sociological
disciplines and raises fundamental problems about the application of current
deception tools on Romanian texts, our key research goals are:

RG1. Explore which language markers and indications are more successful
in distinguishing deception given a piece of Romanian text on the topic of
friendship.

RG2. Related to the previous research goal, we create and evaluate the
effectiveness of a wide range of binary classifiers for predicting the truthfulness
and deceptiveness of texts.

RG3. Determine whether or not the Latent Semantic Analysis (LSA)
method is better suited for this task compared to other different data rep-
resentations such as the ones based on Linguistic Inquiry and Word Count
(LIWC) or term frequency-inverse document frequency (TF-IDF).
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The paper is organized as follows. Work related to our problem is discussed
in Section 2. The methodology described in Section 3 incorporates the prepro-
cessing stage, text representations, and data analysis. Section 4 is concerned
with the development of the classification models. Section 5 presents the
experimental results and discussions. Conclusions and directions for further
research are presented in Section 6.

2. Related work

There are verbal signals to deceptive behavior that are part of the existing
verbal lie detection methods utilized by professional lie catchers and scholars
[16]. Automatic linguistic methods have been utilized to analyze the linguistic
elements of the constitution of deceptive language in English generally.

Typically, specialists have used the word classes specified in the Linguis-
tic Inquiry and Word Count, or LIWC [12], which is a linguistic examination
tool that creates a taxonomy of words based on psychologically meaningful
categories. It has been utilized to investigate matters such as personality,
psychological acclimation to different changes, social judgments, tutoring dy-
namics, and mental health.

LIWC was for the first time used by Pennebaker’s research group for several
studies on the language of deception [9]. Through five different experiments,
they collected a corpus of real and fake texts as part of their research. The
factors that were considered to be relevant predictors in at least two of the
experiments were: self-reference terms, references to others, exclusive words,
negative emotion elements, and motion words. The justification behind the
underperformance in a number of studies might be the fact that the verbal
signals of deception in oral contact do not transpose in written communication
and the other way around.

LIWC has been used for the examination of deception in written language.
Research in this field has been addressed by computational linguists and a
relevant example is represented by [8], who applied LIWC for post hoc analysis,
evaluating many linguistic characteristics on a corpus of 100 fake and true
statements on three contentious themes - the survey being similar to [9]. As
an initial experiment, they used two ML classifiers: Näıve Bayes and Support
Vector Machine. Both algorithms have been trained using word frequencies,
like a Bag-of-Words model. They achieved an average classification accuracy
of 70%, which is altogether higher than the 50% baseline. Based on this
information, they computed a dominance score linked with a certain word
class within the set of misleading texts as a measure of salience. The word
coverage, or the linguistic item’s weight in the corpus, was then calculated.
Therefore, they determined some particular characteristics of deceptive texts.
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In this strand of research, [10] used the same two ML classification algo-
rithms. For their training, apart from drawing a comparison between lexically-
based deception classifiers and a random guess baseline, the authors addition-
ally assessed two more automatic approaches: genre recognition by analyzing
the frequency distribution of parts of speech (POS) tags, and a text classifi-
cation method which enables them to model both content and context with
n-gram features. Their final goal was to identify fraudulent opinion spam,
which is a fundamentally different challenge from the problem of identifying
dishonest language. When it comes to detection, findings reveal that text
classification based on n-grams is the best technique; nevertheless, combin-
ing LIWC features and n-gram features is the solution in order to achieve
somewhat superior results.

Similar scientific endeavors as [8] were made by [1]. The importance of
this paper comes from the novelty of exploring deception in the Spanish lan-
guage and creating a comparison with similar studies that follow English as
the main focus in order to uncover structural and lexical variations in the
linguistic manifestation of deception in both languages. This paper describes
an artificial intelligence model based on a Support Vector Machine (SVM) for
detecting dishonesty in an ad hoc opinion corpus composed of various Spanish
written communication texts. The questionnaire for the corpus compilation
was designed similarly to that used by [8]. The created framework tests the
effectiveness of the LIWC2001 categories in Spanish compared with a Bag-
of-Words (BoW) model. The results emphasize the discriminatory power of
the variables, the two first dimensions, linguistic and psychological processes,
being the most relevant ones from the LIWC categories.

These investigations manage written language as utilized in asynchronous
methods of communication, while Hancock and his research group investigated
deceptive language in real-time computer-mediated communication (CMC),
in which all members are online simultaneously using chat rooms. [6] ex-
plored dissimilarities between the transmitter’s and the recipient’s linguistic
way across honest and deceptive communication in their initial research based
on LIWC. They picked the elements thought to be important to the hypothe-
ses for this study, which were word counts, pronouns, emotion words, sense
terms, exclusive words, negations, and inquiry frequency. The findings re-
vealed that when respondents lied, they were more chatty, using more words,
more allusions to others, and more sense-related vocabulary.

3. Methodology

It is worth mentioning that during this study, we also created our own
deception dataset of autobiographical narratives which was a non-topic-specific
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dataset. All the experiments and data analysis we carried out were also done
on that set of data but the results were not competitive further proving the
difficulty of this classification problem, especially in the context of diverse
narrative settings where a common subject of discussion is absent.

3.1. Dataset.
To study the distinction between true and deceptive statements, we used

the only such data set, to the best of our knowledge, which is the deception
dataset mentioned in [13], which covers four distinct cultures: the US, India,
Mexico, and Romania. Each part of this dataset comprises short deceptive and
truthful statements on three subjects of discussion: beliefs on abortion, views
on capital punishment, and sentiments about a best friend. In this research,
we used only the ones related to best friends as this topic is the most generic
one and can replicate better how people lie on common topics.

The data extracted from the [13] dataset were gathered from native Ro-
manian speakers using a web interface. The respondents have been enlisted
through contacts of the paper’s authors [11]. For the third subject (best
friend), the participants in that study were first asked to meditate about their
best friend and detail the motives behind their fellowship (incorporating facts
and stories considered important for their relationship). Accordingly, for this
situation, they were requested to express their true sentiments about how they
felt about their best friend. Next, they were required to imagine an individual
they could not stand, and depict their relationship with that person as if they
were their best friend. In this subsequent case, they needed to lie about their
emotions towards this individual.

In all cases, the instructions requested no less than 4 to 5 sentences and
as numerous details as possible. Altogether, there were gathered 149 true
and 149 false testimonies about best friends with an average of 78 words per
statement. Furthermore, manual verification of the quality level of the input
was made.

For ease of understanding and explanations, we decided to use a suggestive
name for the dataset. As it is a topic-specific dataset, focused on the subject
of best friends, the dataset will be from now on referred to as the BestFriend
dataset. In Table 1, we included some examples from the BestFriend dataset,
divided by class, which in this context is the level of truthfulness.

3.2. Data preprocessing and representation.

3.2.1. Preprocessing.
This stage is concerned with the preparation of deceptive and true texts

before extracting relevant features. As part of the data preparation, several
operations were performed. To begin with, we converted all the capital letters
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Table 1. Dataset examples

Deceptive statement Truthful statement
Mereu mă ajută când am nevoie.
Dacă nu ı̂nt,eleg ceva este foarte
răbdătoare s, i ı̂mi explică până la
capăt. Nu este niciodată invid-
ioasă pe mine. Ne ı̂nt,elegem de
minune.

Suntem cei mai buni prieteni
deoarece ne putem spune orice
ı̂n fata fără sa ne deranjeze,
avem aceleas, i concept, ii s, i idei,
ne ajutam la greu s, i petre-
cem la bine. Putem discuta
o problema personala fără sa
afle ı̂ncă 10 oameni.

to lowercase and all punctuation marks were eliminated (they are always used
in any correctly written text, but they do not carry any specific information
required to train the model for this problem). For the next operation, we
used the LIWC lexicon and a dictionary with Romanian words and their lem-
mas. We used either the word or its lemma if the word did not exist in the
LIWC lexicon. After all the above-mentioned preprocessing had been done,
we reconstructed the phrase with space as a separator between each word.

3.2.2. Representation.
Our study is based on a textual representation that is somehow different

from the general models that are used in NLP, such as TF-IDF or BoW rep-
resentations, but it preserves their intuition. This representation is based on
the Linguistic Inquiry and Word Count lexicon.

Linguistic Inquiry and Word Count or LIWC, is a tool for textual exam-
ination where words are divided into psychologically relevant groups. The
Romanian version of this lexicon incorporates 47,825 entries and is organized
into 73 categories related to psychological processes. This taxonomy offers
an effective technique for examining the emotional, cognitive, and structural
components contained in language on a word-by-word basis. Words and word
stems are classified in the LIWC internal lexicon along four broad dimensions:
standard language processes, psychological processes, relativity, and personal
concerns [4]. Each word or word stem is characterized by at least one of the
73 default word categories.

From all the categories, we chose the most relevant classes according to dif-
ferent studies that investigated a similar problem as the one stated in our re-
search: [8], [7], [1] and [9]. These categories would be: self-reference terms,
references to others, negative emotion elements,motion words, belief-
oriented vocabulary, words related to certainty, negation terms,
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sense terms and positive emotion elements. Table 2 contains examples
of relevant instances of words that belong to the LIWC categories.

Table 2. LIWC categories and relevant examples

LIWC category Examples
self-reference terms ”eu”, ”̂ımi”, ”̂ıns, ine”, ”mi-”
references to others ”̂ınsăt, i”, ”̂ıs, i”, ”l-”, ”le”

negative emotion elements ”panicat”, ”nelinis,tit”, ”smiorcăi”, ”amărât”
motion words ”fugi”, ”prăbus, ire”, ”̂ımpiedicat”

belief-oriented vocabulary ”bănui”,”gândire”, ”ret, ine”
words related to certainty ”binêınt,eles”, ”categoric”, ”iminent”

negation terms ”fără”, ”n-as,”, ”nicăieri”
sense terms ”privitor”, ”pălăvrăgea”, ”̂ıns, făca”

positive emotion elements ”acceptat”, ”mult,umire”, ”valoros”

These categories are used as they are considered related to deception, for
instance, an increased sense terms linguistic variable indicates deception, as
liars attempt to create a detailed story. To give another example, there is less
self-reference in false narratives and more frequent references to third parties
and objective elements. This suggests impersonality as the liar tries to increase
the narrative distance [2].

Moreover, we added two more relevant values in the feature vector of each
text, more specifically the number of words presented in each text and the
Type-Token Ratio (TTR). The TTR is defined as the ratio of unique tokens
(types) divided by the total number of tokens. We added these measurements
as it is generally considered that liars tend to produce more words during
deceptive discussions [7] and the deceptive narratives are expressed with a
higher syntactical simplicity [3], thus a lower Type-Token Ratio that evaluates
a person’s verbal diversification and asses textual richness.

For each text that was provided, we created a count vector with eleven
values in which the first nine represents a category of words, more specifically
the number of words that fit into this category and are included in the text
and the last two represent the number of words and the TTR.

3.3. Data analysis.
Before proceeding to create the machine learning models we wanted to study

the difficulty of the classification task that we are trying to solve and in order
to do that we used a number of techniques.
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0: Deceptive class 1: Truthful class

Figure 1. t-SNE algorithm applied on the BestFriend Dataset

3.3.1. Investigate difficulty of the classification.
To determine the difficulty of the classification task, we employed t-distributed

Stochastic Neighbor Embedding (t-SNE) algorithm. It computes a non-
linear dimensionality reduction which allows us to separate and visualize data
that cannot be separated by a straight line. After we ran different tests, with
different parametrizations (such as different perplexity and number of itera-
tions) of the algorithm, we concluded that there is a tendency towards clearer
shapes as the perplexity value increases. Applying the t-SNE algorithm, we
obtained a semicircle shape (Figure 1), the graphic having a tendency to dif-
ferentiate the two classes at the opposite poles of the figure.

3.3.2. Feature Relevance.
As we previously mentioned in the RG1 goal, we want to explore the quality

of linguistic markers in deception detection. In order to do that, another
approach that we considered was the investigation of the relevance of the
extracted features.

Pearson Correlation Coefficient
More precisely, we computed the Pearson Correlation Coefficient [5] to ex-

amine the relationships between all features within the dataset. Additionally,
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we also calculated the coefficients between the features and the labels to as-
sess their predictive power. Given the values of the correlations between each
feature and the set of labels, computing the Pearson Correlation Coefficient
on the BestFriend Dataset, provided us with values between -0.183703 and
0.350826. By sorting the values of the coefficient we deduced that the most
relevant features are: self-reference words, the number of words, belief-oriented
vocabulary, sense terms, vocabulary related to positive emotions, references
to others, and lastly, motion words. When it comes to features, there is a
fairly strong positive relationship (correlation coefficient with a value above
0.7) between the number of words and the following features: self-reference
terms, references to others, and belief-oriented vocabulary. This is expected as
the dataset focuses on autobiographical stories, relationships with people, and
opinions on them. Moreover, a moderate positive correlation (value above 0.6)
exists between the number of words and both words related to certainty and
positive emotion elements. This would suggest that people talk more when
they experience positive emotions but also when they are or try to emulate a
sense of certainty.

Relief Algorithms
Correspondingly to what we expressed in the latter paragraph, we wanted

to deepen our analysis and we also applied feature selection using Relief algo-
rithms [15]. Relief calculates a score for each feature expressing the relevance
of that feature for the output label. The scores are used to rank and choose
top-scoring features for feature selection. For our analysis, we looked at fea-
tures based on their relief scores, prioritizing those with higher values such as
self-references, insight vocabulary, the number of words, sense terms, positive
emotion words, words related to certainty, negative emotion terms, and lastly,
the TTR. Comparing these results with the ones obtained via the Pearson Co-
efficient, we can conclude that both algorithms found relevant five categories:
self-references, belief-oriented vocabulary, sense terms, positive emotion terms,
and the number of words.

4. Developing the Classification Model

After pre-processing and feature extraction, we wanted to evaluate three
different classifiers: Support Vector Machine(SVM), Random Forest (RF),
and Artificial Neural Network (ANN).

To develop the deception classifiers of the first two above-mentioned clas-
sification algorithms, we used the Scikit-learn (Sklearn) library. For all the
classifiers we used the default parametrization given by the library. More pre-
cisely, for RF the criterion is set on gini and the n estimators is 100. For SVM
we did not modify the kernel function from the default value of Radial Basis
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Function Kernel or rbf . For the ANN we employed the Keras deep learning
framework for constructing our neural network architecture. The model com-
prises two Dense layers: the first layer consists of 64 neurons with a rectified
linear unit (ReLU) activation and the second layer is a single neuron output
layer with a sigmoid activation function. The model was compiled using the
Adam optimizer and the binary cross-entropy loss function to optimize the
network’s performance in the binary classification task. Additionally, we uti-
lized accuracy as the evaluation metric. The training process involved fitting
the classifier to the training data using a batch size of 32 and training for 25
epochs, with a validation split of 0.2.

For the models’ training and testing, we did the experiments using 5-fold
Stratified Cross-Validation. The 5-fold Stratified Cross-Validation ensures
that each fold is then used once as validation while the four remaining folds
form the training set and that each is made by maintaining the percentage of
samples for each class. This way we have a division of 80% of the data being
used in the training process and 20% for testing. The next section presents
the results we obtained by our three classifiers during a number of different
experimental setups.

5. Results and discussions

Consistent with what we expressed in the RG2 research goal, we created
and evaluated a number of binary classifiers along with linguistic models. The
results that we obtained and a conclusive discussion based on the outcomes of
our experiments are presented in the current section.

5.1. Experimental results.
To implement our machine learning models, we employed Python 3.7 and

the Windows operating system. The tables in this section summarize the
results of our experiments in terms of accuracy and F1-Score in the testing
step for the three various classifiers that have been utilized on the linguistic
models. These metrics are expressed in the form of confidence intervals (CI)
that have a 95% confidence level. For these calculations the next formula was
used:

CI = x̄± z ∗ σ√
n

where:

• x̄ is the mean of the testing accuracies
• n is the sample size
• σ is the standard deviation of the testing accuracies
• z is the confidence coefficient, which is 1.96 for a 95% confidence level
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For the experiments that we conducted, we used different linguistic models
that will be presented in the following.

Experiment 1. LIWC-based model: 11 features
The first linguistic model uses in the feature representation all the initial at-

tributes that were selected, 9 characteristics computed based on the LIWC lex-
icon (the number of: self-reference terms, references to others, negative
emotion elements, motion words, belief-oriented vocabulary, words
related to certainty, negation terms, sense terms, positive emotion
elements), to which we added the number of words and the TTR. The
results obtained for the LIWC-based model, using all three classifiers, can be
consulted in Table 3. Along with this experiment we tried to use all of the 73
categories of the LIWC lexicon, along with the two features added by us (the
number of words and the TTR), but the results were extremely similar to the
ones obtained via our linguistic model with only 11 features.

Table 3. Testing accuracy and F1-Score for the LIWC-based
model on the BestFriend dataset

Classifier Accuracy (CI%) F1-Score (CI%)
SVM 0.658±0.099 0.622±0.126
RF 0.715±0.065 0.707±0.055
ANN 0.731±0.034 0.735±0.072

During the tests, we took into consideration the analysis we conducted
on the dataset and the results presented in Subsection 3.3, and we created
some simplified linguist models, with only the features that were found to be
qualitative attributes in our study. We tried several set-ups such as using only
the features found relevant by either the Pearson Coefficient or by the Relief
Algorithms and also tried creating a model with features from both. Given
this context, we retrained and tested these leaner models, however the results
we obtained showed a decrease compared to the initial LIWC-based model
with 11 features.

Experiment 2. TF-IDF model
To draw a comparison between the linguistic model based on the LIWC

lexicon and general representations used in Natural Language Processing, we
trained the classifiers that use a TF-IDF representation. This representation
was obtained by utilizing the TfidfV ectorizer with smooth idf on True to
prevent zero divisions and the min df on 0.001 to ignore terms that have a
document frequency strictly lower than the given threshold.

Experiment 3. LSA model
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As previously stated in our RG3 goal we wanted to draw a comparison
between a TF-IDF representation and a LSA one. Latent Semantic Analysis
or LSA is a technique that learns latent topics by decomposing or factorizing
the document-term matrix such as the TF-IDF matrix using a mathematical
technique known as Singular Value Decomposition or SVD. The purpose of
Latent Semantic Analysis is to reduce the dimensionality of the corpus vector
space while detecting higher-order patterns within it.

For the LSA representation, the TF-IDF vectors were mapped by calling
TruncatedSV D with a number of 300 topics that have a variance of 99%. The
topic value was chosen in regard to the variance ratio graph that we plotted
for the dataset based on the TF-IDF representations and we chose the value
that presented the highest value. The plot can be visualized in Figure 2 and
was created by calculating the total variance ratio as the sum of the variances
explained by each of the selected components for all the possible values (from
one to the total length of the vocabulary).

For the TF-IDF and LSI representations we experimented with various to-
ken N-gram sizes (from 1-gram to 5-grams), but we decided to utilize a smaller
subset, just from unigrams and 2-grams, as the discriminating capability of
the other values as types of N-grams proved to be extremely limited, and
as a result, these findings were omitted. Additionally, we also experimented
with Principal Component Analysis (PCA) representations but found results
similar to those obtained with LSA.

Table 4. Testing accuracy and F1-Score for the TF-IDF and
LSA models on the BestFriend dataset

Classifier N-grams
TF-IDF

representation
LSA

representation
Accuracy F1-Score Accuracy F1-Score

SVM 1-gram 0.785±0.082 0.791±0.095 0.789±0.086 0.797±0.08
2-grams 0.718±0.092 0.726±0.074 0.678±0.137 0.669±0.153

RF 1-gram 0.755±0.068 0.753±0.082 0.678±0.038 0.675±0.062
2-grams 0.715±0.021 0.665±0.056 0.668±0.088 0.673±0.087

ANN 1-gram 0.913±0.069 0.914±0.064 0.89±0.141 0.88±0.165
2-grams 0.896±0.15 0.904±0.127 0.849±0.185 0.837±0.215

The values in the tables confirm that the classification task is solved more
successfully in the case of the neural network-based classifier across all of the
linguistic models. This suggests the potential of neural network architectures
in similar classification tasks such as deception detection in legal contexts as
courtroom cases would represent. Secondly, despite employing LSA (Latent
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Figure 2. Graphic of the coherence score depending on the
number of topics for the Best Friend dataset

Semantic Analysis) dimensionality reduction, we did not observe improve-
ments in the studied metrics. This indicates that LSA may not enhance the
performance of the classifiers in this context nor capture the semantic complex-
ity of the specificities of deceit. Furthermore, increasing the size of N-grams
did not result in improved performance metrics. This finding suggests that
simply expanding N-grams may not necessarily enhance the classifier’s perfor-
mance as it might introduce data sparsity. This might also be a result of the
fact that Romanian, even though it generally follows a Subject-Verb-Object
(SVO) word order, is more flexible than English in terms of word order varia-
tion meaning that two n-grams could contain the same words but in a different
order. Another conclusion that we draw is related to the linguistic models that
we designed, especially the ones that do not use LIWC as a base for feature
vector creation. Even though TF-IDF and LSA are considered to be general
models, they were able to achieve in most cases better results than the models
trained with psychologically relevant attributes. This made us conclude that
a major part of the deceptive process in the case of topic-specific statements
is not related to which category of words we use, but which terms we utilize.

5.2. Comparison with SOTA.
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Even though our study is considered to be a novelty, from the point of
view of experimenting on Romanian datasets, we tried to draw a comparison
between the results that we obtained and the performance of other similar
approaches 5, even though they are not all implemented on a topic specific
dataset or they are following different languages. Considering this aspect,
we chose a sample of researches to compare their results with the ones we
achieved.

Firstly, [14] created a new open-domain deception dataset that also includes
demographic data such as gender and age. Even though the methods that
obtained the best performance are not similar to the ones conducted by us, and
the dataset has a somewhat autobiographical topic, the authors tried several
sets of features, including semantic features based on the LIWC lexicon. This
approach had only an accuracy of 60.21% compared to the maximum of 69.50%
obtained via part-of-speech (POS) tags.

Next, a more similar approach to ours in terms of the classification algo-
rithms that have been used, the selected features, and the data utilized for
research is presented in [13]. Even though the study presents experiments
made on a cross-cultural dataset, a comparison deserves to be done as our
experiments were made on the Romanian version of the dataset collected for
the mentioned paper.

From all the research we evaluated, [1] is the closest one to our approach
in terms of methodology, dataset, and target language. The research is the
exploration of a non-English language, more precisely on Spanish written com-
munication. They have designed an automatic classifier based on SVM and
the dataset is created similarly to the one mentioned in [8]. We consider this
comparison to be the most relevant one as it is done based on a language close
to Romanian, the topic of the dataset is the same as ours and the methodology
is similar.

6. Conclusions and Future Work

Although many artificial intelligence models for automatic deception detec-
tion were implemented, most of them were for English texts, the Romanian
Language being somehow neglected. In this paper, we researched an impor-
tant Natural Language Processing task, analyzed a topic-specific dataset, and
investigated automatic methods for the identification of deceptive language
in written Romanian statements on the topic of friendship, using several rep-
resentations for their training such as the LIWC psycho-linguistic categories,
TF-IDF and LSA. By comparing different algorithms and evaluating their
output we achieved a 91.3% accuracy in terms of detecting deception, which
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Table 5. Comparison between our models and relevant re-
search

Dataset Features Classifier
Classification
performance

Open Domain
Deception Dataset [14]

All categories
from the LIWC lexicon SVM

Accuracy
60.21%

Open Domain
Deception Dataset [14] POS tags SVM

Accuracy
69.50%

Best Friend
Spanish Dataset [1]

All categories
from the LIWC lexicon SVM

F1-Score
84.5%

Best Friend
English Dataset [13]

Linguistic categories
from the LIWC lexicon SVM

Accuracy
75.98%

Best Friend
Romanian Dataset

TF-IDF
unigram representation ANN

Accuracy
91.3%

F1-Score
91.4%

Best Friend
Romanian Dataset

LSA
unigram representation ANN

Accuracy
89%

Best Friend
Romanian Dataset

Selected categories
LIWC representation ANN

Accuracy
73.1%

represents competitive results that outperform similar methodologies we used
as state-of-the-art approaches for this task.

As for future work, although the classification algorithms provided positive
results, there are a number of improvements that can be mentioned. One
development can be made in terms of the datasets that are used as there is a
lack of data for this type of task, especially in less studied languages such as
Romanian. Furthermore, datasets that explore different types of deception and
contexts where people lie would be helpful in creating more accurate textual
lie detectors.

Moreover, even though every language has its individuality and the decep-
tion process should be, from a certain point, particular for the language, the
proposed approach could be extended to different languages. This direction
could be the one of studying possible structural and lexical dissimilarities be-
tween the linguistic manifestation of deceit in languages from different families
(i.e. Romance languages and Germanic languages).

Additionally, more features can be added to the classification algorithm for
an improvement in deception detection. We plan to explore further the impli-
cation of affect and the possible inclusion of automatic emotion analysis into
the identification of deceptive language. Moreover, different representations of



AUTOMATIC DETECTION OF VERBAL DECEPTION IN ROMANIAN 85

the texts are to be considered, as word embeddings are a very versatile method
in problems of text analysis and classification.

Finally, another advancement that can be made is in the algorithms that we
studied. Given the fact that the best results were obtained with an artificial
neural network, a dive into some Deep Learning architectures would bring a
new perspective on deception detection. For example, an architecture based
on Transformers might help with the difficulty of the classification task and
bring better outcomes.
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