
INFORMATICA
2/2023

STUDIA
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

No. 2/2023
July - December

ISSN (online): 2065-9601; ISSN-L: 2065-9601
©STUDIA UBB INFORMATICA

Published by Babeș-Bolyai University

EDITORIAL BOARD

EDITOR-IN-CHIEF:

Prof. Horia F. Pop, Babeş-Bolyai University, Cluj-Napoca, Romania

EXECUTIVE EDITOR:

Prof. Gabriela Czibula, Babeș-Bolyai University, Cluj-Napoca, Romania

EDITORIAL BOARD:

Prof. Osei Adjei, University of Luton, Great Britain
Prof. Anca Andreica, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Florian M. Boian, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Wei Ngan Chin, School of Computing, National University of Singapore
Prof. Laura Dioșan, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Farshad Fotouhi, Wayne State University, Detroit, United States
Prof. Zoltán Horváth, Eötvös Loránd University, Budapest, Hungary
Prof. Simona Motogna, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Roberto Paiano, University of Lecce, Italy
Prof. Bazil Pârv, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Abdel-Badeeh M. Salem, Ain Shams University, Cairo, Egypt
Assoc. Prof. Vasile Marian Scuturici, INSA de Lyon, France

YEAR Volume 68 (LXVIII) 2023

MONTH

ISSUE

DECEMBER

2

S T U D I A

UNIVERSITATIS BABEȘ-BOLYAI

INFORMATICA

2

EDITORIAL OFFICE: M. Kogălniceanu 1 • 400084 Cluj-Napoca • Tel: 0264.405300

SUMAR – CONTENTS – SOMMAIRE

A-G. Sîrbu, Deobfuscating JavaScript Code Using Character-Based Tokenization 5

L. Berciu, V. Moldovan, Software Maintainability and Refactorings Prediction Based on

Technical Debt Issues .. 22

R. Lupșa, D. Lupșa, On Composing Asynchronous Operations .. 41

B.E.M. Mursa, M. Kuti-Kreszács, C. Moroz-Dubenco, F. Bota, Facilitating Model

Training with Automated Techniques... 53

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVIII, Number 2, 2023
DOI: 10.24193/subbi.2023.2.01

DEOBFUSCATING JAVASCRIPT CODE USING

CHARACTER-BASED TOKENIZATION

ALEXANDRU-GABRIEL SÎRBU

Abstract. The JavaScript code deployed goes through the process of
minification, in which variables are renamed using single character names
and spaces are removed in order for the files to have a smaller size, thus
loading faster. Because of this, the code becomes unintelligible, making
it harder to be analyzed manually. Since JavaScript experts can under-
stand it, machine learning approaches to deobfuscate the minified file are
possible. Thus, we propose a technique that finds a fitting name for each
obfuscated variable, which is both intuitive and meaningful based on the
usage of that variable, based on a Sequence-to-Sequence model, which gen-
erates the name character by character to cover all the possible variable
names. The proposed approach achieves an average exact name generation
accuracy of 70.53%, outperforming the state-of-the-art by 12%.

1. Introduction

Over the years, naming variables have proven to be one of the most challeng-
ing steps during programming that developers face. Choosing a poor variable
name decreases the readability and understanding of the code, since their pur-
pose and meaning is not reflected directly by the label assigned [3]. Thus,
programmers communicate their intentions via suggestive names, which can
serve as a form of documentation within the code itself, helping other devel-
opers understand the code without relying heavily on external comments or
documentation.

JavaScript is a widely used programming language, primarily used for web
development. JavaScript code is typically embedded directly into HTML doc-
uments or included as an external script, running client-side, meaning that

Received by the editors: 31 July 2023.
2010 Mathematics Subject Classification. 68T05, 68T50.
1998 CR Categories and Descriptors. I.2.6 [Learning]: Subtopic – Connectionism and

neural nets; I.2.7 [Natural Language Processing]: Subtopic – Language generation.
Key words and phrases. JavaScript deobfuscation, variable name prediction, Deep

Learning, Recurrent Neural Network, Abstract Syntax Tree.

5

6 ALEXANDRU-GABRIEL SÎRBU

it executes in the user’s web browser, enabling dynamic content and interac-
tivity without requiring server-side processing. Since JavaScript is a scripting
language, meaning that the its code is interpreted, rather than compiled, and
because the JavaScript code is ran directly into the user’s web browser, this
code is visible directly in the web browser, thus allowing users to visualize,
analyze it and possibly learn from it.

In order to make the JavaScript code more difficult to understand, develop-
ers opt to modify the source code in order to make it less readable, while pre-
serving its functionality. Usually, these methods are based on a mapping from
the initial variable and function names to short, arbitrary, non-meaningful
identifier names, by using code minification tools, mapping which is available
only to the developers of the initial JavaScript code. As the name of the tools’
type suggests, the main idea behind such a tool is to reduce the size of the
JavaScript file, in order to reduce its loading time [13], thus increasing the
performance of the web page, while also providing a layer of code obfuscation.

While code obfuscation is often used on the web pages in order to protect
the intellectual property of the code, sometimes its deobfuscation is crucial.
For example, deobfuscation can be valuable for security analysis and vulner-
ability assessment, since obfuscated code can hide potential security risks.
Thus, by deobfuscating the code, security professionals can more easily iden-
tify and understand the underlying security issues, enabling them to assess
the risks accurately and propose appropriate mitigation strategies. Moreover,
deobfuscation can also be used in the educational process, allowing develop-
ers to learn from and understand obfuscated code. In general, experienced
programmers can easily understand obfuscated code, but those who lack the
experience require deobfuscation tools in order to gain some insights into ad-
vanced programming techniques and algorithms.

Although there are multiple deobfuscation techniques, such as Cloning,
Static Path Feasibility Analysis and a combination between Static and Dy-
namic Analyses [14], our main focus will be to rename the obfuscated variables
in order to facilitate the analysis of JavaScript files.

In this paper we propose a deep learning approach to deobfuscate JavaScript
source files, which reverses the process of code minification by inferring mean-
ingful variable names based on both their initial assignment and their further
usages, using character-based tokenization. A Sequence-to-Sequence model
will be used for generating the name character by character to cover all the
possible variable names. Thus, our trained model does not rely on the labels
that it has been initially trained on, offering a solution which gives decent
naming suggestions even on unseen training data, while also being able to
suggest better names for constant variables. Experiments will be conducted

DEOBFUSCATING JAVASCRIPT CODE 7

on a data set containing real world JavaScript code, and the results obtained
by our model will be compared to state-of-the-art approaches.

In short, the work aims to answer the following research questions:

RQ1. How to correctly pick a name for a variable using a deep learning ap-
proach, without encountering it beforehand in the training data?

RQ2. How would a generative model compare as opposed to a simple, classi-
fication model for the problem of JavaScript code deobfuscation?

The rest of the paper is organized as follows. Section 2 will discuss previous
ways of generating variable names, including state-of-the-art techniques and
how well they performed. Section 3 will present our approach of choosing the
best suited variable name, by using a Sequence-to-Sequence architecture, how
the data is handled and how to evaluate our constructed model. Section 4
directly compares our approach to the state-of-the-art approach in the litera-
ture, while also discussing our achieved results. The conclusions of the paper
and directions for future work are outlined in Section 5.

2. Related work

A deep learning approach is proposed by Bavishi et al. [1], which is com-
pared to two state-of-the-art tools JSNice [11] and JSNaughty [15], against a
large corpus of real-world JavaScript code, achieving 47.5% name prediction
accuracy, outperforming or performing really close to the tools aforementioned.
This approach tokenizes the JavaScript code and uses the context of a vari-
able in order to provide a fitting name for it. Thus, for each occurrence of a
local variable, it extracts the q preceding tokens and the q following tokens,
concatenating them into the context of that respective variable. Since this
approach generates highly redundant usage summaries, since sub-sequences of
tokens occur repeatedly, an auto-encoder is used in order to compress the given
vector. For prediction, a predefined vocabulary of possible variable names is
constructed, and the the authors use a Recurrent Neural Network with a single
Long Short-Term Memory layer in order to learn a mapping from the variable
context to the variable name. The Recurrent Neural Network is used in order
to solve conflicts between variable names: if the predicted variable name is a
keyword or if it overshadows a name from its parent scope, then another name
prediction is made.

In order to improve the performance of code related tasks, Roziere et al. [12]
introduced a new pre-training objective based on deobfuscation and outper-
forms Masked Language Modeling objectives, such as BERT, on tasks such as
code search, code summarization and unsupervised code translation, besides
deobfuscating fully obfuscated source files. The pre-training objective used is

8 ALEXANDRU-GABRIEL SÎRBU

represented by replacing class, function and variable names with special to-
kens, after which the model has to recover the original names, similarly to how
Masked Language Modelling’s objective is to predict a word based on its con-
text. The deobfuscation objective is realized with a seq2seq model, which is
trained to map the obfuscated code into a dictionary represented as a sequence
of tokens. This model manages to recover 45.6% of the initial identifier names
on the Google BigQuery data set. By solving the task of deobfuscation, the
authors showed that this pre-trained model achieves better performances than
the BERT model on clone detection, code summarization, natural language to
code and on code translation from Python to Java and vice-versa.

The problem of variable name generation also arises when copy-pasting
code, and the copied code has to be modified in order to match the context
into which it was pasted. Liu et al. [9] have discussed this problem of code
adaptation, whose importance rises from the adaptation bugs, raised by incon-
sistent control flow, inconsistent renaming, inconsistent data flow and redun-
dant operations. To solve this task, the authors collect a data set from GitHub
repositories with at least 20 stars. Their goal is to compare their approach
with various pre-training objective introduced for code related tasks. Thus, the
authors compared three Masked Language Modeling approaches by training
a RoBERTa model, the aforementioned model in the previous approach and
a CodeT5 model, which is supposed to outperform prior methods on under-
standing tasks such as code defect detection, clone detection and translation
tasks. The model the authors proposed is a transformer with two possible
implementations: a uni-decoder transformer, which names a variable based
on previously predicted names, and a parallel-decoder transformer, which cal-
culates the individual probability without taking into consideration the other
predicted symbols. The second type of transformers predicts a name indepen-
dently from the rest, factorizing the output distribution per-symbol. The re-
sults are somehow predictable, as the uni-decoder transformer achieves higher
performance than the pre-trained objective-based models, and has slightly
better results than the parallel-decoder transformer.

Jaffe et al. [6] have approached this problem in the form of assigning mean-
ingful variable names for decompiled code. Their solution is based on aligning
the line-by-line translation of the decompiled code into meaningful code, using
a Statistical Machine Translation, Moses. In decompiled code, variables are
automatically given general names, such as v1 and v2, and Statistical Ma-
chine Translation model should rename these variables, while keeping the rest
of the code identical. The main idea behind such a model is that the model
tries to learn the probability distribution of a sentence in target language to

DEOBFUSCATING JAVASCRIPT CODE 9

be the translation of a sentence in the source language. Moses is an open-
source Statistical Machine Translation toolkit, which automatically estimates
the language and translation models given a sentence-aligned parallel corpus,
which, in our case, is the decompiled code against the initial pre-compiled
code, which contains meaningful names for variables. This approach achieved
a 28.6% exact match for the name of each variable.

3. Methodology

This section introduces our methodology for deobfuscating JavaScript code,
using a Sequence-to-Sequence model in order to generate the variable names
character-by-character, based on their initial value and their usages, with the
goal of answering RQ1.

3.1. Problem statement. Our problem can be formulated as follows: given
a JavaScript file, rename a variable in such a way that its new name reflects
intuitively its purpose. For this task, we will convert the JavaScript code into
an Abstract Syntax Tree, after which we will extract that variable’s assignment
and usages and, based on that, the model will suggest a fitting name for it.

The data set for this problem can be constructed directly based on any
available source code, be it online or offline, depending if the target is to
write more general code or specialized code in some issue, respectively. Once
the code has been selected, there are various tools, such as UglifyJS which,
although are intended to be used as minification tools, they usually obfuscate
variables to reduce the size of the JavaScript file, making them load faster in
order to improving a website’s performance. Thus, UglifyJS renames variables
and function names to shorter, often single-letter names, removes unnecessary
white spaces and comments, and perform other transformations to make the
code more compact, without altering its functionality. Since we are later
converting the obfuscated code directly into an Abstract Syntax Tree, none of
the other operations done by UglifyJS should impact the information we gain
through that conversion.

3.2. Proposed approach. The first step in our approach is to convert the
given code into an Abstract Syntax Tree. An Abstract Syntax Tree is a tree-
like data structure that represents the abstract syntactic structure of a pro-
gram, specific to a programming language, which are commonly used when
constructing compilers and when analyzing code. This tree representation,
when compared to the simple string interpretation of the input, provides a
more structured representation of the code, that captures the hierarchical re-
lationships between different elements of the code, such as functions and loops.

10 ALEXANDRU-GABRIEL SÎRBU

Figure 1. JavaScript code example converted into an Ab-
stract Syntax Tree format

Thus, a machine learning algorithm would better understand the code’s logi-
cal flow and dependencies, which would make it easier to extract meaningful
patterns and features. Moreover, Abstract Syntax Trees typically have a lower
dimensionality than raw text strings, especially for complex code, whose re-
duction can lead to both faster training times and better model performance
due to reduced complexity [17]. An example of a JavaScript code conversion
from plain-text code into an Abstract Syntax Tree format can be seen in Figure
1, where a variable is assigned, a function is called, after which that function
is declared.

Usually, when naming a variable, choosing an appropriate and meaningful
name is essential for writing clear, maintainable and understandable code.
Thus, the chosen name has to clearly describe the meaning and purpose of
the variable. The meaning is usually represented by the type of that variable,
usually inferred by its initialization. As for the purpose of the variable, it
can be inferred directly based on that variable’s usages. Programmers tend to
rename variables when the purpose of those variables is changed, or if their
initial type is completely different. As for experts in code deobfuscation, they
can intuitively guess a variable’s purpose based on its usages, but still choose
to rename them in order to aid them for further deobfuscation. Because of this,
we will extract from the constructed Abstract Syntax Tree the initialization
of our current variable, and its usages i.e., lines of code where the variable has
been used, where the initial variable name is replaced by a special token.

DEOBFUSCATING JAVASCRIPT CODE 11

3.2.1. Deep learning model. In our task, since we will generate the sequence
of characters that determine the name of the variable, we will use a Sequence-
to-Sequence model. This model is a type of deep learning model, which is
composed on an Encoder and a Decoder. The Encoder is an Recurrent Neural
Network which processes the input sequence and generates a fixed-length con-
text vector, also known as the encoding. The Encoder works by reading the
input sequence step by step and encoding the information into a context vec-
tor, aiming to capture the semantic representation of the input sequence. The
second component, the Decoder, is also a Recurrent Neural Network, which
takes the context vector produced by the encoder as its initial hidden state,
then it generates the output sequence step by step, one token at a time. The
Sequence-to-Sequence model architecture allows to handle input and output
sequences of different lengths, by compressing the variable-length input into
a fixed-length context vector, after which the output sequence is generated
token by token based on that context vector.

In our approach, variable names and values are encoded in character-level,
in order to accommodate for new values, unseen in our training data, to be
handled correctly by the model constructed [10]. Moreover, using a character-
level encoding, it is possible to capture sub-word information of, for example,
a class name and its characteristics, and may allow the model to understand
prefixes, suffixes and stems, thus giving the model the ability to understand
word inflections and grammatical variations better. Another advantage is
represented by the removal of noise in the form of typos, and the model may
recognize similar words based on their character-level similarity, even if there
might be some minor spelling differences, while also being more memory ef-
ficient because the vocabulary size is substantially reduced. When encoding
Abstract Syntax Tree Nodes, we will be liniarizing each node using Breadth
First Search in order to maintain the structural equivalence, while also keeping
the model relatively more lightweight [5]. Thus, each node type will have a
specific label, which will be stored in the vocabulary specific to the JavaScript
code, alongside the ASCII characters for the value of these nodes.

The proposed model will follow the Sequence-to-Sequence architecture, which
is composed of two components: the Encoder and the Decoder, whose archi-
tecture can be seen in Figure 2. The Encoder receives the input tokenized
and converts it into a more dense and continuous representation, via the Em-
bedding layer, whose purpose is to capture the semantic relationships between
tokens. As a regularization technique, a Dropout will be used, in order to pre-
vent overfitting and to improve the generalization of the model. The Gated
Recurrent Unit, which computes the hidden state of the input and forwards
it to the decoder as a context, by using both the output of the Decoder and

12 ALEXANDRU-GABRIEL SÎRBU

Figure 2. Sequence-to-Sequence deep learning model architecture

the output of previous Gated Recurrent Units. The Decoder follows a similar
data flow, but this time, the previous output result will be the input to the
Embeddings layer, forwarded to a Gated Recurrent Unit. After that, the out-
put of the Gated Recurrent Unit, together with the context resulted from the
Encoder will go through a Cross Attention layer, whose purpose is to allow the
Decoder to focus on relevant parts of the source sequence, while generating
each word of the target sequence [16]. A further processing of the results is
done through the Linear layer, and a Softmax layer extracts the best next
character for our resulting variable name.

The formula based on which the character at position t is generated is given
by:

ct = softmax(fseq2seq([init : usages], st−1)),

where fseq2seq is the function the Sequence-to-Sequence model tries to ap-
proximate, init represents the embedding of the initialization of the variable,
usages is the embedding of the usages of that variable, [:] denotes vector
concatenation, and st−1 is the previous hidden decoder step.

DEOBFUSCATING JAVASCRIPT CODE 13

3.2.2. Performance evaluation. For evaluating our model’s performance, we
will apply k-fold cross-Validation, splitting the data set into a two compo-
nents: one for training, and the other for validation and testing. The latter
component will be split in half, resulting in 80% of the data set being used
for training, 10% for validation and the other 10% for testing, when choosing
k = 5. Thus, we will be able to give a proper confidence interval, which should
give a better performance measure grasp over the data set used [4].

For our task, two evaluation metrics will be used on a testing data set: one
evaluation metric which computes the accuracy of each character prediction,
since we are using Recurrent Neural Networks, and another evaluation metric
which scores the accuracy of each name predicted. The second metric helps
us compare to other approaches, in order to see how well the model proposed
by us fares against the other approaches proposed.

4. Experimental results

This section presents the experimental results obtained by evaluating the
performance of the approach introduced in Section 2 for deobfuscating JavaScript
code. In addition, a direct comparison to Context2Name [1], JSNice [11] and
JSNaughty [15] is conducted, in order to answer RQ2. Section 4.1 will describe
the data set that we are working on, then the experimental setup and the pa-
rameters employed for the deep learning model are presented in Section 4.2. A
discussion on the obtained results and a comparison to related work is further
conducted in Section 4.3.

4.1. Data set. At this step we will construct a data set similar to the one
described by Bavishi et al. [1], to be able to compare our model with the
state-of-the-art. Thus, from all the files from a publicly available data set1 of
JavaScript programs, which contains 150 thousands non-minified JavaScript
files, the duplicate files, the ones very large and the ones that cannot be
processed will be removed. After that removal, 97979 files remain which con-
tain 2667804 total variables and 239007 unique names. The minification of
JavaScript code is done using UglifyJS, which reduces the file size of those
files by renaming variables and removing spaces.

As it can be seen in Figure 3, the most frequent names that the variables
have are those with a more generic value, such as len or length, which usually
describe the size of an object or array, result, which is usually the returned
variable from a function call or operation, and self , which referred to the
current browser window. There are also many variables names that are either

1https://www.sri.inf.ethz.ch/js150

14 ALEXANDRU-GABRIEL SÎRBU

Figure 3. Word cloud over the most frequent variable names
found in the dataset

highly generic, such as x, or whose name describes perfectly what it refers to,
such as style or error.

The Recurrent Neural Network architecture highly depends on the size of
the output, i.e., in our case, the length of the variables’ name. Thus, as it can
be seen in Figure 4, although the length can vary infinitely, most of the cases,
a name has 4 characters, and the variable names with a length higher than 6
follow a standard exponential distribution.

4.2. Experimental setup. The input for our model is represented by both
the context of the variable, i.e. its initialization and usages, and the previous
hidden state of the Decoder’s Gated Recurrent Unit, used for generating the
next character for the mentioned variable. Thus, we will require two vocab-
ularies: one for the code component, and one for the name of the variable.
From our tests, the vocabulary for code has a size of 158, while the size for the
name’s vocabulary will be 77. In the data set, all non-ASCII characters have

DEOBFUSCATING JAVASCRIPT CODE 15

Figure 4. The distribution of the variable name length

been removed, since they would hundredfold these sizes, making them more
difficult to align and the model more complex.

In our experiment, the architecture used has been described in Section 3.2.1.
After constructing the vectors for the initialization and the usages, we decided
to keep the first 300 tokens from them, while also picking only the first 3
usages, and concatenating everything, thus obtaining a vector with a size of
1200. The Encoder’s Embeddings layer will have an input equal to the size
of the code’s vocabulary, and an output of 256. It will be followed by a
Bidirectional Gated Recurrent Unit, which increases the output size to 512.
The Decoder’s Embeddings layer will have an input size equal to the size of the
name’s vocabulary and an output of 256, being followed by an Unidirectional
Gated Recurrent Unit, which has the output equal to 256. Thus, the Cross-
Attention layer receives a question having the size of 512, and the key equal
to 256, having as an output a vector of size 512. The Decoder’s Linear layer
has an input of size 512 and an output equal to the name’s vocabulary size.
Thus, the total number of parameters that have to be trained is 738,381.

16 ALEXANDRU-GABRIEL SÎRBU

4.3. Results and discussion. After applying a 5-fold cross-validation as de-
scribed in Section 3.2.2, we obtained an average character generation accuracy
of 96.52% and an average name match of 70.53% on our test date sets. For
each iteration of the cross-validation algorithm, we obtained the following
name match accuracies: 70.81%, 81.16%, 61.70%, 66.30% and 72.68%. Thus,
we obtain [64.13, 76.93] name match accuracy percentage as a confidence in-
terval, with a confidence of 95%. The 95% confidence interval (CI) [2] has
been computed by using the formula [µ − α, µ + α], where µ is the mean of
the accuracies obtained during the 5-fold cross-validation and α is the margin
of error, computed as

α = 1.96
σ√
5

(σ is the standard deviation of the obtained accuracies). Although our ob-
tained 95% CI (6.4%) is large enough, the name match accuracy metric em-
ployed is more restrictive than the standard character generation accuracy,
mostly because of the variable sequence length of both the input and the
output, which might lead the model to learn certain parts of target name at
different epochs. Moreover, although our goal is to match the generated name
fully to the one predetermined, partial matches might still be valuable, even
if the final output does not perfectly match the target sentence, which is not
considered by our metric.

A direct comparison to other state-of-the-art approaches can be seen in
Table 1, where our approach and its results are marked with bold. The ta-
ble depicts the name match accuracies for our Seq2Seq model compared to
the state-of-the-art tools Context2Name [1], JSNice [11] and JSNaughty [15].
This comparison has been made using the results available in the previous
work [1], which have been computed on the exact same data set and testing
methodology. During the training of our model, validation loss has decreased
in conjunction with the training loss, which can be seen in Figure 5, which
shows that the model was not overfitted. Moreover, in Figure 6, we can see
a direct comparison between the output generated from UglifyJS, where each
variable name is obfuscated using a single letter. The output of JSNice, as
compared to the output generated from our model provides a level of confu-
sion regarding the variables fb and Helper. In this case, our model generates
wrongfully only one name, i.e. adddataService, as opposed to the instance
found in the dataset addDataService, which proves that the model correctly
learned that lowercase letters have the same meaning as capital letters.

As it can be seen in Figure 7, both most frequent and the most inaccurately
predicted type is represented by function calls, whose assigned name can be
challenging for programmers, thus the inconsistencies in the dataset, which
might lead to incorrect-generated names. One interesting case is represented

DEOBFUSCATING JAVASCRIPT CODE 17

Seq2Seq Context2Name JSNice JSNaughty
70.53% 58.1% 56.0% 47.7%

Table 1. Results compared to state-of-the-art approaches

Figure 5. Training and validation losses

Figure 6. Comparison between code generated by UglifyJS,
JSNice and the output of our proposed model

by function expressions, which are similar to functions lambda functions as-
signed with a name, and string literals assignments, where there are fewer and
more varied examples to learn from, which might cause the high error rate.

18 ALEXANDRU-GABRIEL SÎRBU

Figure 7. Histogram over the variable name types correctly
and incorrectly predicted, sorted based on their frequency

The approach introduced in the paper presents both advantages and dis-
advantages which have to be considered. The main difference between our
approach and the previous work in this field is the character-level encoding
of non-fixed nodes in the Abstract Syntax Tree, such as the values of strings
and function names. This allows us to build an open label vocabulary, which
would be much smaller than others and uses strictly the possible types of nodes
and the ASCII characters. Thus, the model is able to generate names from
input never-before seen, and might generate an output related to that input.
Moreover, the code encoding based on Abstract Syntax Tree allows the model
to easily learn the relations between nodes and their values as opposed to the
traditional token representation of each line of code. As for the disadvantages,
as opposed to other methods, this approach cannot handle name collisions: in
the previous work presented, name collisions were solved by picking the label
with the highest probability, which is not yet existent in the current scope.

DEOBFUSCATING JAVASCRIPT CODE 19

Such an approach to name collisions would not provide well-generated labels,
but a random sequence of non-intelligible characters.

5. Conclusions and Future Work

This paper addressed the problem of JavaScript code deobfuscation, more
generically the problem of assigning names to variables. We proposed a
deep-learning generative model, which constructs a fitting name for a vari-
able character-by-character, using their initialization and usages, encoded as
Abstract Syntax Trees. After evaluating the model on a data set contain-
ing real world JavaScript code, we achieved 70.53% name match accuracy,
outperforming state-of-the-art approaches.

Overall, the code obfuscation is a devious task, while also making the code
harder for the user to understand it, and sometimes, making him completely
unaware of the code that is running on his machine. Code obfuscation was
used for malware to propagate through the internet [8], yet there are still orga-
nizations that try to protect their code and intellectual property, whose code
should be technically safe. There are many other methods of obfuscation be-
sides renaming variables, such as adding code sequences that, when executed,
it will have no effect. This technique is used for generating polymorphic code,
usually used in malicious code [7]. These techniques provide no real protec-
tion from stealing the intellectual property because a professional developer
will eventually understand the code, but the described techniques make the
whole process more difficult.

To conclude, these results prove that the names in variables are more than
a simple label, and they provide a meaning, and their name’s characters are
similar to words in a sentence.

As for the future work, the presented approach cannot handle well name
collisions, as opposed to any of the previous work presented. This approach
could be enhanced by adding the current generated name up to that point,
but would also require a data set where variables are annotated with multiple
possible names. Thus, picking the character with the second-best probability
would be a valid solution to this problem, since the model could generate a
name properly by using it in future character generations.

The task of generating variable names, in the presented approach, can be
adapted to other programming languages as well, where code obfuscation at
the level of variable names is predominant, such as decompiled Java and C++.
Thus, the only component which has to be changed would be the one that con-
verts the code into the language-specific Abstract Syntax Tree, which can be an
area worth experimenting in. Moreover, the task of variable name generation
can be integrated in other code-related Natural Language Processing tasks,

20 ALEXANDRU-GABRIEL SÎRBU

such as code generation, where suggestive names have to be recommended
based on already-generated logic, or into a code linter, which suggests mean-
ingful variable names based on pre-defined projects to set a naming standard
as company policy.

References

[1] Rohan Bavishi, Michael Pradel, and Koushik Sen. Context2name: A deep learning-
based approach to infer natural variable names from usage contexts. arXiv preprint
arXiv:1809.05193, 2018.

[2] George W. Burruss and Timothy M. Bray. Confidence intervals. In Kimberly Kempf-
Leonard, editor, Encyclopedia of Social Measurement, pages 455–462. Elsevier, New
York, 2005.

[3] Raymond PL Buse and Westley R Weimer. Learning a metric for code readability. IEEE
Transactions on software engineering, 36(4):546–558, 2009.

[4] Tadayoshi Fushiki. Estimation of prediction error by using k-fold cross-validation. Sta-
tistics and Computing, 21:137–146, 2011.

[5] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 855–864, 2016.

[6] Alan Jaffe, Jeremy Lacomis, Edward J Schwartz, Claire Le Goues, and Bogdan
Vasilescu. Meaningful variable names for decompiled code: A machine translation ap-
proach. In Proceedings of the 26th Conference on Program Comprehension, pages 20–30,
2018.

[7] Xufang Li, Peter KK Loh, and Freddy Tan. Mechanisms of polymorphic and metamor-
phic viruses. In 2011 European intelligence and security informatics conference, pages
149–154. IEEE, 2011.

[8] Peter Likarish, Eunjin Jung, and Insoon Jo. Obfuscated malicious javascript detection
using classification techniques. In 2009 4th International Conference on Malicious and
Unwanted Software (MALWARE), pages 47–54. IEEE, 2009.

[9] Xiaoyu Liu, Jinu Jang, Neel Sundaresan, Miltiadis Allamanis, and Alexey Svyatkovskiy.
Adaptivepaste: Code adaptation through learning semantics-aware variable usage rep-
resentations. arXiv preprint arXiv:2205.11023, 2022.

[10] Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-Son Le, Stefan Kombrink, and Jan
Cernocky. Subword language modeling with neural networks. preprint (http://www. fit.
vutbr. cz/imikolov/rnnlm/char. pdf), 8(67), 2012.

[11] Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program properties
from” big code”. ACM SIGPLAN Notices, 50(1):111–124, 2015.

[12] Baptiste Roziere, Marie-Anne Lachaux, Marc Szafraniec, and Guillaume Lample. Dobf:
A deobfuscation pre-training objective for programming languages. arXiv preprint
arXiv:2102.07492, 2021.

[13] Steve Souders. High-performance web sites. Communications of the ACM, 51(12):36–41,
2008.

[14] Sharath K Udupa, Saumya K Debray, and Matias Madou. Deobfuscation: Reverse
engineering obfuscated code. In 12th Working Conference on Reverse Engineering
(WCRE’05), pages 10–pp. IEEE, 2005.

DEOBFUSCATING JAVASCRIPT CODE 21

[15] Bogdan Vasilescu, Casey Casalnuovo, and Premkumar Devanbu. Recovering clear, nat-
ural identifiers from obfuscated js names. In Proceedings of the 2017 11th joint meeting
on foundations of software engineering, pages 683–693, 2017.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[17] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. A novel neural source code representation based on abstract syntax tree. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages 783–
794. IEEE, 2019.

Babes, -Bolyai University, Faculty of Mathematics and Computer Science, 1
Mihail Kogălniceanu, Cluj-Napoca 400084, Romania

Email address: alexandru.gabriel.sirbu@stud.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVIII, Number 2, 2023
DOI: 10.24193/subbi.2023.2.02

SOFTWARE MAINTAINABILITY AND REFACTORINGS

PREDICTION BASED ON TECHNICAL DEBT ISSUES

L. BERCIU AND V. MOLDOVAN

Abstract. Software maintainability is a crucial factor impacting cost,
time and resource allocation for software development. Code refactorings
greatly enhance code quality, readability, understandability and extensi-
bility. Hence, accurate prediction methods for both maintainability and
refactorings are vital for long-term project sustainability and success, of-
fering substantial benefits to the software community as a whole. This
article focuses on prediction of software maintainability and the number
of needed code refactorings using technical debt data. Two approaches
were explored, one compressing technical debt issues per software com-
ponent and employing machine learning algorithms such as ExtraTrees,
Random Forest, Decision Trees, which all obtained a high accuracy and
performance. The second approach retained multiple debt issue entries and
utilized a Recurrent Neural Network, although less effectively. In addition
to the prediction of the requisite number of code refactorings and soft-
ware maintainability for individual software components, a comprehensive
analysis of technical debt issues was conducted before and after the refac-
toring process. The outcomes of this study contribute to the advancement
of a dependable prediction system for maintainability and refactorings,
presenting potential advantages to the software community in effectively
managing maintenance resources. From all the employed models, the Ex-
traTrees model yielded the most optimal predictive outcomes. To the best
of our knowledge no other approaches of using ML techniques for this
problem have been reported in the literarture.

1. Introduction

In the last decades, software has known a continuous growth facing increas-
ingly demanding expectations and requirements. Consequently, the software
development process must aim for optimal efficiency. The objective is to cre-
ate software systems that are bug-free, easily modifiable and updatable, and

Received by the editors: 19 June 2023.
2010 Mathematics Subject Classification. 68N99.
1998 CR Categories and Descriptors. D2.0 [Software Engineering]: General – Stan-

dards; D2.9 [Software Engineering]: Management – Software Quality Assurance.
Key words and phrases. Software Quality, Sonarqube, Refactoring, Code Smells.

22

SOFTWARE MAINTAINABILITY AND REFACTORINGS PREDICTION 23

capable of accommodating new features seamlessly. The maintenance phase
of software development is a substantial part of its life cycle. This phase is
of utmost importance as it spans the entire lifespan of the software product,
commencing immediately after the completion of the development process.
Numerous studies have emphasized the significance of software maintainabil-
ity [9], [5], [21].

There is a strong connection between software systems’ maintainability and
technical debt issues. There are several types of software issues that can
be detected by performing a static analysis of the software systems. Without
actually running the code, software static analysis looks for potential problems
and enhances code quality. It specifically looks at a program’s source code
to find potential problems such syntax mistakes, security flaws, performance
problems, and maintainability concerns. A small number of issues implies a
higher maintainability and vice versa. One of the code’s problems found in
the static analysis process is represented by the technical debt.

As presented in [2], [16], and [27], there is a strong connection between
the software systems’ detected issues, its maintainability and the refactorings
performed on that software. Refactoring aims to lower technical debt while
increasing readability, maintainability, and scalability of the software system.
When the maintainability is too low and there are too many issues which over-
complicate the development process, a refactor is needed. After successfully
and correctly performing the refactor, the number of issues should decrease
and the software maintainability should increase, improving the quality of the
software.

With the growing interest in the field of software development, there has
been a significant rise in the development of tools aimed at enhancing the
software development process. These tools offer various capabilities, including
the ability to measure code metrics, conduct static analysis to identify tech-
nical debt issues, and provide suggestions for code improvements. Among the
widely recognized tools in this domain are SonarQube 1, PyLint 2, ESLint 3,
cppcheck 4, CheckStyle 5, FindBugs 6. There are also tools that aim to detect

1Sonarqube. https://www.sonarqube.org/.
2PyLint, https://pypi.org/project/pylint/
3ESLint, https://eslint.org/
4cppcheck, https://cppchecksolutions.com/
5CheckStyle, https://github.com/checkstyle/checkstyle
6FindBugs, https://spotbugs.github.io/

24 L. BERCIU AND V. MOLDOVAN

code refactorings between different code versions, such as RefactoringMiner 7,
RefactoringCrawler 8, RefDiff 9, and several others.

The goal of this paper is to predict the number of refactorings that need to
be performed, and based on this number to classify the maintainability of each
software component, aiming to obtain a performance as high as possible. To
accomplish this, multiple intelligent algorithms have been employed and ana-
lyzed to identify the most suitable algorithm for this specific task. In addition
to predicting software maintainability and number of needed code refactor-
ings, an analysis of the technical debt issues before and after the refactoring
process has been conducted.

The problem of predicting software maintainability and number of needed
refactorings based on technical debt issues was addressed firstly as a classifica-
tion problem, and then as a regression problem. The classification task referred
to classifying each software component into one of the following maintainabil-
ity classes: ”Great”, ”Good”, and ”Poor”, while the regression task referred
to predicting the number of needed refactorings by each software component.

The subsequent sections of this paper are organized as follows: Section 2
outlines the related work, Section 3.1 presents the data preparation, and Sec-
tion 3.2 expounds on the architectural configurations of the employed machine
learning algorithms. A comparative analysis is presented in Section 4, followed
by a more comprehensive examination of the SonarQube issues in Section 5.
Ultimately, Section 6 offers the drawn conclusions and points towards potential
directions for future work.

2. Related work

Ensuring the correctness and efficiency of modern software systems is es-
sential. Software maintainability, being a crucial quality factor, plays a vital
role in ensuring the long-term sustainability of software systems and mitigat-
ing technical debt. It facilitates effective bug fixing, enables seamless software
updates and improvements, fosters collaboration within development teams,
and supports the overall adaptability and evolution of software systems. By
prioritizing maintainability, organizations can streamline their software de-
velopment processes, enhance productivity, and deliver reliable, high-quality
software products that meet the evolving needs of their customers and stake-
holders.

The topic of software maintainability prediction has received a significant
interest, leading to numerous studies dedicated to addressing this problem.

7RefactoringMiner, https://github.com/tsantalis/RefactoringMiner
8RefactoringCrawler, http://dig.cs.illinois.edu/tools/RefactoringCrawler/
9RefDiff, https://github.com/aserg-ufmg/RefDiff

SOFTWARE MAINTAINABILITY AND REFACTORINGS PREDICTION 25

A comprehensive review study conducted by Elmidaoui et al. [8] examined
77 research studies published between 2000 and 2018 that aimed to predict
software maintainability based on various software quality metrics. The review
presented in [8] provides a detailed analysis of the employed maintainability
prediction techniques, validation methods, accuracy criteria, overall accuracy
of machine learning (ML) techniques, and the techniques offering the best
performance.

In [26], Van Koten and Gray found that ML techniques, including Bayesian
networks [23], outperformed regression-based models in prediction accuracy.
The study showed that ANNs [24] capture complex non-linear relationships
and approximate any measurable function, SVM/R [6], [7] excels in learning
classification and regression tasks, especially with high-dimensional data, DT
[4] offer a straightforward and comprehensible approach and FNF methods [13]
handle limited or missing data, while RA [20] is a simple and reliable technique,
particularly useful with multiple independent variables. This represented a
reason for which, in this approach, machine learning algorithms were chosen
to be used in the detriment of regression-based models.

The prediction techniques utilized in these studies can be broadly classified
into two main groups: ML techniques and statistical techniques. Statistical
techniques encompassed various approaches, such as regression analysis (RA),
probability density function (PD), Gaussian mixture model (GMM), discrim-
inant analysis (DA), weighted functions (WF), and stochastic model (SM). In
contrast, ML techniques encompassed artificial neural networks (ANN), case-
based reasoning (CBR), regression and decision trees (DT), Bayesian networks
(BN), evolutionary algorithms (EA), support vector machine and regression
(SVM/R), fuzzy and neuro fuzzy (FNF), inductive rule-based (IRB), ensemble
methods (EM), and clustering methods (CM).

The review study [8] showed that the statistical techniques, more popular
from 2000 until 2007, are only effective when a linear or predetermined rela-
tionship exists between the dependent and independent variables. With the
advent of ML techniques, researchers started exploring both statistical and
ML approaches to assess their predictive capabilities for maintainability. In
[14], Kaur and Kaur emphasized that traditional parametric statistical data
analysis methods may be insufficient and suggested that the utilization of ML
algorithms or pattern recognition approaches, which are inherently nonpara-
metric, could lead to improved prediction accuracies.

The process of refactoring holds an important significance owing to its ca-
pacity to enhance code quality, improve maintainability, and foster collabora-
tion among developers. By eliminating code smells, mitigating technical debt,
and optimizing code performance, refactoring contributes to the development

26 L. BERCIU AND V. MOLDOVAN

of robust and scalable software systems. Consequently, numerous research
studies have been conducted to comprehensively analyze the relationship be-
tween refactoring and software maintainability, as well as to explore predictive
methods for anticipating the need for refactorings.

In [12], Hegedus et al. presents an enhanced dataset comprising verified
refactoring data pertaining to open-source systems. The study reveals that
refactoring is frequently employed on entities exhibiting low maintainability,
signifying developers’ proactive efforts to address deteriorated code. Metrics
associated with size, complexity, and coupling exhibit notable increases in
refactored elements, indicating developers’ focus on improving these aspects.
However, the analysis suggests that metrics related to code clones have a
comparatively lesser impact.

In [1], an investigation on the prediction of software refactoring by employ-
ing Support Vector Machine (SVM) and optimization algorithms is presented,
exploring the relationship between code coverage and the effectiveness of the
test suite in an evolutionary context. The authors examine the application
of SVM in conjunction with genetic algorithms to forecast refactoring at the
class level. Utilizing a dataset derived from open-source software systems, the
study achieves promising levels of accuracy, ranging from 84% to 93%. The
performance is further enhanced by integrating SVM with the optimization
algorithms.

3. Experiment and study plan

The experiment was designed in the following manner: firstly, the data
was gathered, then the dataset was prepared The last included several steps:
Preparing the technical debt dataset: computing the number of issues per soft-
ware component, then associating numerical values to severity (BLOCKER:
5, CRITICAL:4, MAJOR:3, MINOR:2, INFO:1) and type (CODE SMELL:1,
BUG:2, VULNERABILITY:3), removing the N/A entries and finally comput-
ing for each software component the mean of the severity, debt and type values;
Preparing the refactoring dataset implied computing the number of refactor-
ings per software component. Finally, the dataset was created after merging
the technical debt dataset with the refactoring dataset. After that, data was
split into training (70%) and testing (30%). The models were trained, and then
the testing data was used to evaluate them. The last step was represented by
analyzing the obtained results and drawing conclusions.

3.1. Data Preparation.
In order to predict the software maintainability and number of needed refac-

torings based on technical debt issues, several steps need to be performed. The
first element needed is represented by data. In this research investigation, a

SOFTWARE MAINTAINABILITY AND REFACTORINGS PREDICTION 27

comprehensive analysis was conducted on three open-source Java projects,
namely jEdit 10, FreeMind 11, and TuxGuitar 12. The study encompassed two
distinct categories of data pertaining to these projects. Firstly, the techni-
cal debt issues encountered in jEdit version 5.5, FreeMind version 1.0.1, and
TuxGuitar version 1.5.2 were examined. Secondly, the refactorings performed
between these versions and subsequent versions of each project, specifically
jEdit 5.6, FreeMind 1.1.0, and TuxGuitar 1.5.3, were taken into account. The
dataset [17] containing all technical debt issues information about the jEdit
project version 5.5, FreeMind project version 1.0.1 and TuxGuitar project
version 1.5.2, has been previously used in other studies as well, such as [18].

The data needed for the Technical Debt analysis step of the experiment
was collected by running SonarQube on the three projects and extracting the
issues data found by the tool, such that the details provided by the tool will be
considered as attributes. While the tool execution for jEdit and FreeMind was
straightforward, namely successfully compiling the projects and running the
Sonarqube tool by using the Sonar Scanner version matching the build system
used (ANT in both cases), the data collection for TuxGuitar proved to be more
difficult, as TuxGuitar is divided in a multitude of individual projects compiled
by Maven build system, more exactly 65 individual projects. From those, we
selected the base TuxGuitar project, TuxGuitar Android Resource, TuxGuitar
AudioUnit, TuxGuitar CoreAudio, TuxGuitar Editor Utils, TuxGuitar GM
Utils, TuxGuitar Lib and TuxGuitar UI toolkit. SonarQube was executed on
each individual project and then the issues fetched and merged together.

In this research study, a selective approach was adopted regarding the at-
tributes of the technical debt issues under consideration. After running the
chosen static analysis tool, a report was obtained that contained a list of all
detected issues, each issue associated with the name of the software compo-
nent in which it’s located, and several other attributes such as severity, debt,
type, creation date, rule, update date, and others. Specifically, the severity,
debt, and type of each issue were thoroughly investigated. This decision was
based on the notion that certain attributes, such as the key, did not provide
significant or pertinent information for the classification or regression model.
Furthermore, some attributes required more intricate examination and pre-
processing, which warranted their inclusion in future research endeavors. In
addition to the severity, debt, and type of each issue, the computation of the
number of issues per component was performed and subsequently utilized in
the prediction process.

10jEdit, http://www.jedit.org/
11FreeMind, https://freemind.sourceforge.net/
12TuxGuitar, https://sourceforge.net/projects/tuxguitar/

28 L. BERCIU AND V. MOLDOVAN

Regarding the final representation of the technical debt issues data, two
distinct approaches were pursued:

• The first approach involved compressing the technical debt issues
for each project into a single instance per software component. To
obtain the final values of severity and type for each component,
these attributes were mapped to numerical values using the following
scheme: Severity = INFO: 1, MINOR: 2, MAJOR: 3, CRITICAL:
4, BLOCKER: 5 and Type = CODE SMELL: 1, BUG: 2, VUL-
NERABILITY: 3. After the mapping process, the mean values of
severity and type were computed by summing their respective values
for each component and dividing the sum by the number of issues
associated with that component. When calculating the mean for the
debt attribute, instances with a value of N/A were excluded from
consideration, and the associated issues were removed from the total
count per component. By performing these operations, each software
component was represented by a single instance.

• The second approach did not involve compressing the issue instances
into a single instance per class/component. Instead, it focused on
removing issues that had an N/A value for the debt attribute. This
decision was made to enhance interpretability for the model, as N/A
values posed difficulties in interpretation. Additionally, this approach
also resulted in a decrease in the number of issues per component,
which had been previously computed.

The data utilized in this study comprised information related to the refac-
torings conducted between two versions of each project, which was obtained
through the employment of the RefactoringMiner tool. This tool facilitated
a comparison between two project versions and generated a report detailing
the refactorings executed during this transition. The provided refactoring
information encompassed the type of each refactor, a concise description of
its purpose, and the specific component on which the refactoring was per-
formed. Additionally, the number of refactorings for each software component
was computed. These attributes provided valuable insights into the code’s
condition and offered suggestions for improving its maintainability. To avoid
challenges associated with high-dimensional data, such as overfitting, compu-
tational complexity, and data sparsity, only the count of performed refactorings
per software component was considered in this study.

To create the final dataset, the technical debt issues data and the refac-
torings data were merged. The software components served as the common
element between these datasets, enabling the addition of a new column in
the technical debt issues dataset that represented the number of refactorings

SOFTWARE MAINTAINABILITY AND REFACTORINGS PREDICTION 29

performed on each specific component. Consequently, the analyzed data fed
into the intelligent algorithm contained information pertaining to the severity,
debt, type, and count of technical debt issues for each software component,
alongside the number of refactorings conducted on that particular component.

The problem in this study was initially formulated as a classification task
and later as a regression task. In the regression setting, the predicted output
was the estimated number of refactorings required for each component. In the
classification problem, the output classes were defined as follows:

• ”Great” category: Corresponded to components that had fewer than
5 refactorings performed on them.

• ”Good” category: Associated with software components that under-
went between 5 and 20 refactorings.

• ”Poor” category: Assigned to software components that had more
than 20 refactorings performed on them.

3.2. Architectural Configurations of Employed Machine Learning
Algorithms.

Various architectural configurations were evaluated for the prediction of
software maintainability and the required quantity of refactorings in the ana-
lyzed projects. Employing the initial dataset, which comprised a single entry
for each software component, multiple models were trained and achieved com-
mendable performance.

For the classification approach, the LazyClassifier from the lazypredict.Super-
vised library was employed, and several models were studied, including the
Extra Tree Classifier [10], LGBM Classifier [15], Random Forest Classifier
[3], and K-Neighbors Classifier [11]. Cross-validation with 5 folds and the
f1 macro scoring metric were applied using the cross val score function from
the sklearn.model selection module. Additionally, the MLPClassifier [25] from
the sklearn.neural network module was evaluated with different configurations,
such as varying the number of neurons (100, 150, and 200), considering acti-
vation functions like Relu and logistic sigmoid, and utilizing the lbfgs and
adam solvers as optimization methods. The results are presented in Table 1.

For the regression approach, the LazyRegressor from the lazypredict.Super-
vised library was utilized, and several models were examined, including the
Extra Tree Regressor, K-Neighbor Regressor, Hist Gradient Boosting Regres-
sor, Random Forest Regressor, and Decision Tree Regressor. Similar to the
classification approach, cross-validation was conducted using a KFold of 5,
and the negative mean squared error was used as the scoring metric. The
multi-layer perceptron (MLP) was also applied for regression, with the num-
ber of neurons set to 20, 25, and 30, and the activation functions and solvers
remaining the same as those used in the classification task.

30 L. BERCIU AND V. MOLDOVAN

Table 1. Results obtained for Lazy Classifier models and
MLP and RNN models

Model Accuracy Recall Precision F1-Score

ExtraTreesClassifier 0.92 0.92 0.92 0.92
RandomForestClassifier 0.90 0.90 0.90 0.90

LGBMClassifier 0.88 0.88 0.88 0.88
DecisionTreeClassifier 0.88 0.88 0.88 0.88
ExtraTreeClassifier 0.82 0.81 0.83 0.82
KNeighborsClassifier 0.77 0.76 0.79 0.77

SVC 0.70 0.70 0.71 0.70
MLP 0.69 0.65 0.69 0.67

LogisticRegression 0.63 0.63 0.62 0.62
LinearSVC 0.60 0.59 0.58 0.58
Perceptron 0.56 0.56 0.56 0.56

RNN 0.57 0.58 0.56 0.56

The second dataset, which included multiple entries per component corre-
sponding to detected technical debt issues, was used for training a recurrent
neural network (RNN). The RNN model consisted of the following compo-
nents:

• An Embedding layer with a length equal to the training data’s length.
• A LSTM (long-short term memory) layer followed, utilizing Relu
activation functions for both regression and classification tasks, and
sigmoid activation function solely for classification.

• A Dropout layer with a dropout rate of 0.2.
• Another LSTM layer with the same activation functions as the pre-
vious LSTM layer

• A subsequent Dropout layer with a dropout rate of 0.2
• A Dense layer with Relu activation function for regression and clas-
sification, and sigmoid activation function only for classification,

• Another Dropout layer, identical to the previous two. This layer
helps prevent overfitting and introduces noise, making the network
more robust to dependencies on specific features.

• The last layer was a Dense layer with either 3 output channels for
classification (corresponding to the defined maintainability classes)
or 1 output channel for regression. The activation function used was
Softmax for classification and no activation function for regression.

SOFTWARE MAINTAINABILITY AND REFACTORINGS PREDICTION 31

The model was compiled using the sparse categorical cross entropy loss
function for the classification algorithm and mean squared error loss function
for the regression algorithm. The optimizer used for both algorithms was
adam. The results are presented in Table 2.

Table 2. Results obtained for Lazy Regressor models, MLP
and RNN models

Model R-Squared Adjusted R-Squared RMSE MAE

ExtraTreesRegressor 0.92 0.91 2.75 1.77
RandomForestRegressor 0.90 0.89 3.12 2.36
ExtraTreeRegressor 0.81 0.81 2.88 2.54

DecisionTreeRegressor 0.88 0.88 3.01 1.87
LGBMRegressor 0.88 0.88 3.07 2.18

KNeighborsRegressor 0.75 0.75 2.87 1.99
SVR 0.65 0.65 3.88 3.28

LinearSVR 0.59 0.58 3.97 3.02
MLP 0.58 0.58 3.85 3.25
RNN 0.50 0.50 4.21 3.25

LinearRegression 0.49 0.48 4.69 3.88

4. Comparative analysis

In Table 1, the results obtained for LazyClassifier models, MLP and RNN
models are presented. The best performing model was represented by Extra-
TreesClassifier using the first approach of handling the data, while the lowest
performance was obtained by the RNN model using the second data approach.
The accuracy of the ExtraTreesClassifier was 0.92, also having the same value
for the recall, precision and F1-Score metrics. This suggests that that the
classification model is performing at a high level, making correct predictions,
and effectively capturing positive cases. As for the RNN model, it achieved an
accuracy of 0.57, a recall of 0.58 and a precision and a F1-Score of 0.56, indi-
cating that model has some level of predictive ability, but the performance is
quite low comparative to the other employed models. The RNN model might
be making correct predictions for a portion of the data, but there are also
instances where it’s struggling to provide accurate results. This needs to be
further investigate in order to be improved.

The regression results presented in Table 2 are similar to the ones from the
classification task presented in Table 1, the ExtraTrees algorithms being the
most performant one. The RNN model behaved better than LinearRegression,

32 L. BERCIU AND V. MOLDOVAN

but its performance still needs to be further analysed and improved. The RNN
model obtained a R-Squared and and Adjusted R-Squared of 0.50, suggesting
that he model explains about 50% of the variability in the target variable,
being a moderate fit. A RMSE of 4.21 implies that the model’s predictions
have an average error of around 4.21 units, while a MAE of 3.25 suggests that,
on average, the model’s predictions are off by about 3.25 units from the actual
values.

Following the execution of the ExtraTrees classifier, the outcomes for each
maintainability class are displayed in Table 3. The analysis reveals that the
”Good” class achieved the highest performance, while conversely, the ”Poor”
class exhibited the lowest performance. This observation aligns with the char-
acteristics of the initial dataset, which exhibited an imbalance prior to under-
going data augmentation. Specifically, the dataset contained a smaller number
of instances classified as ”Poor” compared to instances classified as ”Great”
and ”Good.”

Table 3. Results obtained for ExtraTrees model

Output Class Accuracy Recall Precision F1-Score

Great 0.92 0.91 0.93 0.92
Good 0.94 0.94 0.94 0.94
Poor 0.90 0.91 0.89 0.90

Total 0.92 0.92 0.92 0.92

The study focused on comparing the obtained results of software maintain-
ability with the values of the maintainability index [22], which is a popular
measurement method. The maintainability index categorizes software into
three classes: Bad, Satisfactory, and Acceptable. The jEdit 5.5 project was
classified as ”Satisfactory,” FreeMind 1.0.1 as ”Bad,” and TuxGuitar 1.5.2 as
”Satisfactory” based on their maintainability index values. To perform a fair
comparison between the results and the maintainability index, the mean value
of the maintainability index for each project was computed.

The prediction model showed high performance based on the training data,
with the lowest metrics observed for the ”Poor” class. However, the observed
maintainability index values for the three projects did not fully align with
this finding. The mapping between software components and maintainability
classes based on the number of needed refactorings did not match the mapping
based on maintainability index values. This might suggest that there is no di-
rect relationship between the number of refactorings or technical debt issues
and the maintainability index value [19]. The discrepancy between the study’s
findings and the maintainability index can be attributed to the limitations of

SOFTWARE MAINTAINABILITY AND REFACTORINGS PREDICTION 33

metrics used in the maintainability index, which do not fully capture the com-
plexities of object-oriented software. Since the studied projects were developed
using the object-oriented paradigm, it is expected that the results may not
align perfectly with the maintainability index. Thus, our study confirms one
more time that maintainability index does not accurately characterize object
oriented systems.

5. A deeper dive into SonarQube issues

In the previous sections, we provided a high level overview on how main-
tainability index and technical debt metrics exhibit variation between two
successive versions of a project’s release timeline. On the Technical Debt ex-
periment side, we leveraged the SonarQube issues and the refactorings data
from the provided datasets, selected the data most suitable for the experiment
from both sources, merged it together and fed it to artificial intelligence tools.
While this proved to be effective in computing the results of the study and pro-
viding a general answer on the aforementioned research questions, we decided
to further refine and improve our research findings by following a particular
path: diving deeper into SonarQube issues.

Throughout this section, we will present the particularities of SonarQube
issues found inside each project by doing a classification of their types, sever-
ities and numbers, see how they compare between versions and offer a final
comparison with the initial results from the previous section.

5.1. JEdit 5.5 and 5.6. JEdit proved to have the highest number of issues
found for both versions, from all projects under study. For version 5.5, we
have extracted a total of 139.905 issues, from which 134.901 were labeled as
CODE SMELLS and 4004 were labeled as BUG. For Version 5.6, the number
of total issues was 63899, from which 57773 were labeled as CODE SMELL
and 6126 were labeled as BUG. Interestingly, the latter version also reported
8 issues explicitly labeled as vulnerabilities. The sonar rules spanned multiple
file types, such as .java, .html and .xml. The general data can be visualised
in Table 4, while Table 5 shows the data for Java only files.

Table 4. General issues comparison between jEdit versions

Project CODE SMELL BUG VULNERABILITY
jEdit 5.5 135901.0 4004.0 -
jEdit 5.6 57773 6126 8

To properly show how the issues fluctuated between the two releases, tables
6 and 5.1 show how the percentages between issue types changed. We can

34 L. BERCIU AND V. MOLDOVAN

Table 5. Java issues comparison between jEdit versions

Project CODE SMELL BUG VULNERABILITY
jedit-5-5.csv 29093.0 441.0 -
jedit-5-6.csv 20355 541 8

observe a decrease in code smells from 97.14% to 90.40% when it comes to
total code smells reported to the other issues and a staggering numeric decrease
from 135901 to 57773. While this looks like an improvement on a first glance,
if we take BUG issues into consideration, we can observe an actual increase
from 2.86% to 9.59% between versions, more specifically, from 4004 to 6126
issues reported as bugs. An extra 8 vulnerabilities were also found. While the
total number of issues may have decreased, we can clearly observe that their
severity increased, as the number of bugs increased by 50% and bugs having
a higher severity than code smells in general. We can conclude that, at least
for now, the quality of the code decreased through the versions.

Table 6. Distribution of general issues between jEdit versions

Project CODE SMELL BUG VULNERABILITY
jEdit 5.5 97.14% 2.86% -
jEdit 5.6 90.40% 9.59% 0.01%

Table 7. Distribution of Java issues between jEdit versions

Project CODE SMELL BUG VULNERABILITY
jEdit 5.5 20.79% 0.32% -
jEdit 5.6 31.85% 0.85% 0.01%

5.2. Freemind 1.0.1 and 1.1.0. For Freemind, we extracted a total of 12653
issues, from which 12349 labeled as code smells, 302 labeled as bugs and 2
labeled as vulnerabilities. As opposed to jEdit, the number of Java issues
comprises the majority of general issues, with a number of 12549, from which
12269 code smells, 278 bugs and 2 vulnerabilities. Data can be visualised in
Tables 8 and 9.

From a percentages point of view, we can observe that the ratio is similar
for both general issues and java issues, with an approximate 97% and 2%
percent of code smells and bugs holding between releases 10 and 11. The
improvement here can be observed from the number of actual issues between
the two versions, with a clear decrease of both code smells by 25% and bugs

SOFTWARE MAINTAINABILITY AND REFACTORINGS PREDICTION 35

Table 8. General issues comparison between Freemind versions

Project Code Smell Bug Vulnerability
Freemind 1.0.1 12349 302 2
Freemind 1.1.0 9633 249 2

Table 9. Java issues comparison between Freemind versions

Project Code Smell Bug Vulnerability
Freemind 1.0.1 12269 278 2
Freemind 1.1.0 9547 225 2

by 20%. While explicit vulnerabilities did not change, their number are too
few to be relevant in this context.

We can say that the quality of code improved by 20% between releases, as
opposed to jEdit, where the severity increased.

Table 10. Distribution of general issues between Freemind versions

Project Code Smell (%) Bug (%) Vulnerability (%)
Freemind 1.1.0 97.60 2.39 0.02
Freemind 1.0.1 97.46 2.52 0.02

Table 11. Distribution of Java issues between Freemind versions

Project Code Smell (%) Bug (%) Vulnerability (%)
Freemind 1.0.1 96.97 2.20 0.02
Freemind 1.1.0 96.59 2.28 0.02

5.3. TuxGuitar 1.5.2 and 1.5.3. TuxGuitar analysis shows a total of 3296
total issues for version 1.5.2, with a number of 3012 code smells, 258 bugs
and 26 vulnerabilities. For version 1.5.3, we registered a total of 2930 issues,
from which 2746 code smells, 184 bugs and 18 vulnerabilities. We can already
observe an improvement from v1.5.2 to v1.5.3, as all categories of issues had a
clear decrease. Data is shown in Table 12. A main difference from the previous
two inspections shows that, for TuxGuitar, our test produced only java issues,
meaning that the TuxGuitar projects that we analysed did not include other
types of resources such as .html and .xml files that could have been analysed
by SonarQube in the way we ran the tool. Hence, we did not publish a second
table as the data between general issues and Java only issues is not different.

36 L. BERCIU AND V. MOLDOVAN

Table 12. General issues comparison between TuxGuitar versions

Project Code Smell Bug Vulnerability
TuxGuitar 1.5.2 3012 258 26
TuxGuitar 1.5.3 2746 184 18

The distribution percentage of issues between versions has a similar ratio,
while showing a slight increase in code smells and a slight decrease in bugs.
This shows an improvement in the overall code base and a decrease in severity,
as the percentage of bug issues is smaller than code smells when reported to
the total number of issues. The improvement is better than in Freemind’s
case, where, even though every category of findings improved, the percentage
of bugs related to the total issues became higher in the newer version. Table
13 contains the distribution of TuxGuitar issues.

Table 13. Distribution of issues between TuxGuitar versions

Project Code Smell (%) Bug (%) Vulnerability (%)
TuxGuitar 1.5.2 91.38 7.83 0.79
TuxGuitar 1.5.3 93.15 6.24 0.61

5.4. Comparison between the three datasets. All three datasets showed
improvements in the number of issues found between versions. This indicates
that continuous development and refactorings decreased the number of total
issues for each project. Even though the total number of issues has shown
improvement, the quality of the changes was different:

• jEdit introduced more bugs than before, more specifically an addition
of 2122 SonarQube BUG rule violations

• Freemind kept a similar ratio between code smells and bugs, with
bugs slightly taking more space in the newer version

• TuxGuitar had the best result, with a similar ratio between code
smells and bugs, and bugs also decreasing from a distribution point
of view

Relating the above results with the maintainability index computed from
Section 4, we can conclude the following:

• Starting with jEdit as the first analyzed project, we concluded that
the overall code quality decreased between releases, even though the
total number of issues has improved. This is backed by the fact
that the number of bugs introduced in a newer release were superior
(from 2% to 9%) than the older release and the fact that bugs hold

SOFTWARE MAINTAINABILITY AND REFACTORINGS PREDICTION 37

a higher severity than code smells. The flow of development in this
case seems to have brought down the overall quality of the project,
asking the question of what might have happened in the development
process. There may be a correlation between a big number of issues
that the project has and the difficulty of maintaining and developing
a complex application, hence the decrease in code smells and the
increase in bugs in vulnerabilities. This can mark the subject of
future research.

• With Freemind, the development process showed linear progress in
the quality of the code. Both code smells and bugs issues have a
similar percentage between releases, with an overall improvement of
the project quality. Vulnerabilities were not taken into account due
to their low number. This improvement may signify a better man-
agement in development processes and a greater attention to detail
than the other projects when it comes to solving issues. The lower
number of issues than jEdit may also pose a reason for this result,
bringing into consideration the possible correlation from the previ-
ous point. Against all evidence, the maintainability index classified
the project as ”Bad”, showing that the metric may not be generally
applicable to empirical studies on refactorings.

• Finally, it can be observed that TuxGuitar’s shift from version 1.5.2
to 1.5.3 not only exhibited a decrease in overall problems but also
reflected an improvement in its maintainability index. The software
obtained a ”Satisfactory” rating in this area. The success of its refac-
toring endeavors is evident in the positive trajectory, which is charac-
terized by a decrease in bugs and vulnerabilities. Simultaneously, the
increase in code smells highlights the significance of ongoing empha-
sis on refining coding practices, in a way that both maintainability
and overall code quality are maintained in future iterations.

6. Conclusions and future work

This study focuses on the analysis of software source code and its impact on
software maintainability, considering factors such as cost and time allocation.
The use of artificial intelligence has gained prominence in analyzing software
problems. The study explores the relationship between software maintainabil-
ity, technical debt issues, and code refactorings. The objective is to develop
high-performing approaches for predicting software maintainability and the
number of code refactorings based on technical debt issues.

To ensure accurate prediction of software maintainability and the number of
required code refactorings, a comprehensive dataset was essential. This study

38 L. BERCIU AND V. MOLDOVAN

focused on three open-source Java projects: jEdit, FreeMind, and TuxGuitar.
Technical debt issues were obtained by performing static analysis on specific
versions of these projects (jEdit 5.5, FreeMind 1.0.1, and TuxGuitar 1.5.2).
Refactoring data was obtained by using the RefactoringMiner tool to compare
different versions of each project. The technical debt data from the SonarQube
tool was combined with the RefactoringMiner data and processed accordingly.

Two different approaches were considered. The first approach consolidated
the technical debt issues to a single issue per software component, while also
including the count of technical debt issues per component as an additional
feature. Data augmentation techniques, such as Noise Injection, were applied
to balance the dataset for increasing the generalization capacity of the models
by simulating different variations in the data through the addition of random
noise. Classical machine learning algorithms, including the Multi-layer Per-
ceptron, Decision Trees, Random Forest, and Support Vector Machine, were
employed as intelligent algorithms. The ExtraTrees algorithm yielded the best
results in both the classification and regression tasks, achieving an accuracy
of 0.92, F1-Score of 0.92 (classification), R-Squared of 0.92, and RMSE of 2.75
(regression).

The second approach did not modify the technical debt issues associated
with each software component, allowing for the possibility of multiple entries
for the same component in the dataset. A Recurrent Neural Network (RNN)
was employed as the intelligent algorithm for this approach. However, the
RNN model did not perform as well as the ExtraTrees algorithm in the first
approach, achieving only an accuracy of 0.57 (classification) and R-Squared of
0.50 (regression).

The proposed methodology employs technical debt data to forecast the
maintainability of software and the required number of code refactorings in
three open-source Java projects. However, it is important to acknowledge a
potential threat to the validity of the obtained outcomes due to the specific
use of Java projects. Consequently, when applied to projects developed in
different programming languages, the reliability of the results and the model’s
performance may be compromised.

Furthermore, certain aspects were not considered in the current approach
that warrant exploration. These aspects include specific details pertaining to
technical debt issues (e.g., message content) and refactorings (e.g., refactoring
type and description). Integrating the message content of issues and the type
or description of refactorings into the prediction model has the potential to
enhance accuracy and provide more insightful information to end users. Addi-
tionally, the current implementation solely relies on technical debt data, and
future enhancements could involve incorporating additional software metrics.

SOFTWARE MAINTAINABILITY AND REFACTORINGS PREDICTION 39

Such metrics offer valuable insights into the code’s state and their inclusion
could improve the predictive model.

Another area for investigation involves refining the performance of the sec-
ond proposed approach, as it does not condense technical debt data to a single
entry per software component. Similarly, in the first approach, reducing tech-
nical debt data to a single entry per component is achieved by calculating the
mean of all values. However, it is essential to note that this may not be the
most optimal reduction method. Therefore, this presents an additional area
that requires further investigation and refinement.

The attained results represent a step towards building a strong predictive
model for software maintainability and the necessary number of code refactor-
ing. Additionally, these outcomes can be easily integrated into a web applica-
tion, ensuring convenient access. This advancement has the potential to aid
the software community in improving their assessment of software maintain-
ability, thereby contributing to reduced resources needed for the maintenance
phase.

References

[1] Akour, M., Alenezi, M., and Alsghaier, H. Software refactoring prediction using
svm and optimization algorithms. Processes 10, 8 (2022).

[2] Arisholm, E., Briand, L. C., and Johannessen, E. B. An empirical study on
the relationship between software maintainability and bug-proneness. In 2010 IEEE
International Symposium on Software Metrics (METRICS) (2010), IEEE.

[3] Biau, G., and Scornet, E. A random forest guided tour. TEST 25 (2016), 197–227.
[4] Breiman, L. Classification and regression trees. In Decision forests for computer vision

and medical image analysis (2017), Springer, pp. 19–38.
[5] CAST. 2018 software intelligence report. Tech. rep., CAST, 2018.
[6] Cortes, C., and Vapnik, V. Support-vector networks. Machine Learning 20, 3 (1995),

273–297.
[7] Drucker, H., Burges, C. J., Kaufman, L., Smola, A. J., and Vapnik, V. Support

vector regression machines. Advances in neural information processing systems 9 (1997),
155–161.

[8] Elmidaoui, S., Cheikhi, L., Idri, A., and Abran, A. Machine learning techniques
for software maintainability prediction: Accuracy analysis. Journal of Computer Science
and Technology 35, 5 (2020), 1147–1174.

[9] Ernst, N. A., and Eichmann, D. A. The future of software maintenance. IEEE
Software 16, 1 (1999), 44–50.

[10] Geurts, P., Ernst, D., and Wehenkel, L. Extremely randomized trees. Machine
Learning 63, 1 (2006), 3–42.

[11] Guo, G., Wang, H., Bell, D., Bi, Y., and Greer, K. Knn model-based approach
in classification. In On The Move to Meaningful Internet Systems 2003: CoopIS, DOA,
and ODBASE (Berlin, Heidelberg, 2003), R. Meersman, Z. Tari, and D. C. Schmidt,
Eds., Springer Berlin Heidelberg, pp. 986–996.

40 L. BERCIU AND V. MOLDOVAN

[12] Hegedűs, P., Kádár, I., Ferenc, R., and Gyimóthy, T. Empirical evaluation of
software maintainability based on a manually validated refactoring dataset. Information
and Software Technology 95 (2018), 313–327.

[13] Jang, J.-S., Sun, C.-T., and Mizutani, E. Neuro-fuzzy and soft computing: a com-
putational approach to learning and machine intelligence. Prentice Hall, 1997.

[14] Kaur, A., and Kaur, K. Statistical comparison of modelling methods for software
maintainability prediction. International Journal of Software Engineering and Knowl-
edge Engineering 23, 6 (2013), 743–774.

[15] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-
Y. Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural
Information Processing Systems (2017), I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30, Curran Associates, Inc.

[16] Marinescu, R. An empirical study of the relationship between code smells and refac-
toring. Empirical Software Engineering 9, 4 (2004), 429–462.

[17] Molnar, A.-J. Collection of technical debt issues in freemind, jedit and tuxguitar open
source software.

[18] Molnar, A.-J., and Motogna, S. Long-term evaluation of technical debt in open-
source software. In Proceedings of the 14th ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM) (New York, NY, USA,
2020), ESEM ’20, Association for Computing Machinery.

[19] Molnar, A.-J., and Motogna, S. A study of maintainability in evolving open-
source software. In Evaluation of Novel Approaches to Software Engineering (Cham,
2021), R. Ali, H. Kaindl, and L. A. Maciaszek, Eds., Springer International Publishing,
pp. 261–282.

[20] Montgomery, D. C., Peck, E. A., and Vining, G. G. Introduction to linear regres-
sion analysis. John Wiley & Sons, 2012.

[21] NIST. The economic impacts of inadequate infrastructure for software testing. Technical
Report NISTIR 6859, National Institute of Standards and Technology, 2002.

[22] Oman, P., and Hagemeister, J. Metrics for assessing a software system’s maintain-
ability. In Proceedings Conference on Software Maintenance 1992 (Nov 1992), pp. 337–
344.

[23] Pearl, J. Probabilistic reasoning in intelligent systems: Networks of plausible inference.
Morgan Kaufmann (1988).

[24] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations
by back-propagating errors. Nature 323, 6088 (1986), 533–536.

[25] Taud, H., and Mas, J. Multilayer Perceptron (MLP). Springer International Publish-
ing, Cham, 2018, pp. 451–455.

[26] van Koten, C., and Gray, A. R. An application of bayesian network for predicting
object-oriented software maintainability. Information and Software Technology 48, 1
(2006), 59–67.

[27] Wahler, M., Drofenik, U., and Snipes, W. Improving code maintainability: A case
study on the impact of refactoring. In 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME) (2016), pp. 493–501.

Departyment of Computer Science, Babeş-Bolyai University, Cluj-Napoca,
Romania

Email address: liviu.berciu@ubbcluj.ro, vasilica.moldovan@stud.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVIII, Number 2, 2023
DOI: 10.24193/subbi.2023.2.03

ON COMPOSING ASYNCHRONOUS OPERATIONS

RADU LUPŞA AND DANA LUPŞA

Abstract. Asynchronous operations are very useful for actions that wait
for an external event or work for a long time, to avoid blocking the thread
that launches them. Unfortunately, whether they report their termination
via callbacks or via completing a future, composing several asynchronous
calls is difficult and error prone. The continuations mechanism (provided,
for example, in C# Task Parallel Library via ContinueWith()) offers lim-
ited support for scheduling a sequence of operations. In this paper we try
to improve this mechanism with better support for sequencing operations
and exceptions, and with support for conditionals and loops, while cover-
ing the specifics of a C++ implementation. The most recent version of our
source code is at [14].

1. Introduction

Asynchronous operations are operations that are started by a thread via a
function call, but that continue after the initiating call returns.

They are essential in exploiting the parallelism, either between the CPU
and the peripherals or external events, or between CPU cores.

Asyncronous communication and future objects are useful mechanisms to
tolerate high latencies and improve overall performance. Automatic continua-
tion and the mechanism used for updating result values can be used to further
increase applicability and performance in different application and deployment
scenarios [11] [15].

Research in the domain include: analysis of different strategies for updating
future objects[15], proposal for architectures to support asynchronous mes-
sages using future objects while preserving the separation between the logic
and the control aspects in the implementation [10], design for asynchronous

Received by the editors: 28 February 2023.
2010 Mathematics Subject Classification. 68N19, 68Q85.
1998 CR Categories and Descriptors. D.3.3 [Software]: Programming Languages –

Language Constructs and Features; D.1.3 [Software]: Programming Techniques – Language
Concurrent Programming ; D.2.2 [Software]: Software Engineering – Design Tools and Tech-
niques .

Key words and phrases. asynchronous programming.

41

42 RADU LUPŞA AND DANA LUPŞA

stream generators, extending previous facilities [6], new framework to mimic
simple synchronous programming but able to achieve fullflow processing asyn-
chronously [4].

Combining several asynchronous operations to form a program is a difficult
task. The goal of this paper is to study how to create patterns similar to
structured programming. We try to improve the continuation mechanism with
better support for sequencing operations and exceptions, and with support for
conditionals and loops, while covering the specifics of a C++ implementation.

The rest of the paper is organised as follows: section 2 reviews the mecha-
nisms available for getting the results for asynchronous operations. Section 3
discusses in more details the futures with continuation mechanisms. Section 4
describes the proposed framework allowing to combine simpler asynchronous
operations into a more complex ones in a way similar to structured program-
ming. The paper ends with conclusions.

2. Asynchronous operations result and chaininig

For any asynchronous operation, the caller needs to have some mechanism
allowing it find out when the asynchronous operation has finished, and to
retrieve any data produced by that asynchronous operation.

There are two basic mechanisms used by frameworks that offer asynchronous
operations:

callbacks: When the asynchronous operation ends, a callback provided
by the application is called.

futures: The call that initiates the asynchronous operation returns an
object (a future or something that can be used as such) that can be
polled by the application to find out if the asynchronous operation
ended and, possibly, to wait until the operation ends.

2.1. Callbacks. It should be noted that there are lots of ways in which various
libraries offer the callback mechanism. For some, the callback is given as an
argument to the function that starts the asynchronous operation, for others
the callback is registered ahead of time to be called when any operation of a
certain type completes. Also, for some libraries, the callback receives as an
argument the result of the just finished asynchronous operation; for others,
the callback is supposed to call some function to retrieve the asynchronous
operation result and also to free any resources associated to the asynchronous
operation.

Using callbacks is similar to goto-based programming. It is extremely flex-
ible and can be used to build structures like sequence, if-then-else, or loops,
but it is tedious and error-prone to use directly.

ON COMPOSING ASYNCHRONOUS OPERATIONS 43

Another issue with callbacks is that they execute sometimes on some thread
spawn by the library providing the asynchronous operations, and sometimes
from within functions of that library called by the application. In either case,
the thread on which the callback is called may hold some mutexes or may
have to do some more work inside the library after the callback returns. As
a result, there may be restrictions upon what library functions may be called
from within the callback; calling forbidden functions may lead to the call being
rejected, to a deadlock, or even to undefined behavior.

2.2. Futures. Futures were introduced by Liskov and Shrira [9]; they call
them promises. They are available in most mainstream languages and recom-
mended for asynchronous operations. Meyers [12] gives a very good explana-
tion of the futures mechanism in C++11/14, while [5] discusses various future
related issues and their approach in Kotlin.

Futures are better fit for structured programming mechanisms, and the main
pattern is to start several asynchronous operations, that will then proceed in
parallel, and then wait for all to finish and gather and using their results.

Having several operations executing one after another or one operation ex-
ecuting several times in a cycle requires however a thread that waits for the
future corresponding to the previous operation and then calls the next one.
This requires a thread that gets blocked.

3. Futures with continuations

The futures with continuations mechanism was introduced in C#/.NET
Task Parallel Library (TPL) [3], and is also available in Boost, in a C++
standard proposal [1] or in the stlab library[8].

Extending the futures mechanism with continuations in C++ standard li-
brary is a debated issue. There are proponents, like [13], which proposes this
as an extension to the basic C++ std::future mechanism. There are also
opponents, like [7], which argue that std::future should remain a simple,
wait-only type that serves a concrete purpose of synchronously waiting on po-
tentially asynchronous work and they find that it should not be extended with
continuations.

Basically, with futures with continuations, the asynchronous function re-
turns a future that will complete when the asynchronous operation completes.
However, beside the possibility to check whether the future has completed or
to wait for its completion, the caller can also set a callback to be called when
the future completes. The callback typically executes on some thread pool,
usually called an executor.

The basic feature of the future with continuation mechanism is that it decou-
ples the registering of the callback (the continuation) from the asynchronous

44 RADU LUPŞA AND DANA LUPŞA

call itself. With the classical callback mechanism, the callback is supplied as
an argument to the asynchronous call. With the future with continuation, the
asynchronous call returns a future — called Task in C# TPL — which can be
used in all 3 ways of getting the result from the asynchronous operation:

wait for completion: call Wait(),
poll: examine the IsCompleted property,
register a callback: call ContinueWith().

Decoupling of the callback (continuation) from the asynchronous operation
has several benefits.

First, the continuation is registered after the asynchronous operation is
started, at any convenient time for the caller. The classical callback needs to be
prepared beforehand and, in extreme cases, it might get executed even before
the control returns from the call that initiates the asynchronous operation.

Second, the classical callback executes on a thread controlled by the frame-
work providing the asynchronous operation. This usually poses some restric-
tions regarding which functions (especially, from the same framework) can be
called from within the callback; disobeying those restrictions may lead to calls
being rejected, deadlocks, or, in extreme cases, undefined behavior. The con-
tinuations, on the other side, execute on a thread in a thread pool provided
by the future with continuation framework; thus, no restrictions exist with
respect to which functions can be called from within the continuation.

Finally, continuations are more flexible, as their handling is independent of
the asynchronous operation. It is possible to add multiple continuations to the
same asynchronous operation (by calling ContinueWith() multiple times). It
is also possible to add a continuation that is to be invoked when all operations
from a set of asynchronous operations complete (by calling WhenAll()).

4. Composable asynchronous operations

The already existing mechanisms presented in the previous section evolved
in a bottom-up manner, being provided as-is, and to be used as the program-
mer sees fit.

In this paper, we try a more systematic approach: we examine how to write
an asynchronous function as a composition of smaller asynchronous functions.
The construction should thus be similar to the way a classical, sequential,
function is constructed by composing smaller functions.

So, our goal in this section is to create a framework allowing to compose
asynchronous functions in the classical programming structures: sequence,
conditional (if-then-else), and loop, as well as a try-catch mechanism. The
result of composing asynchronous functions should be a new asynchronous
function.

ON COMPOSING ASYNCHRONOUS OPERATIONS 45

At the same time, we want not to lose the possibility of executing the
asynchronous operations in parallel, when appropriate.

One trivial way to compose asynchronous functions is to treat them as syn-
chronous: just call the function and then wait for the asynchronous operation
to complete, blocking the execution of the current thread. This defeats the
purpose of asynchronous operations. It needs to create a potentially large
number of threads, and then, each time a thread blocks waiting for an asyn-
chronous operation, it must switch to a new thread. Creation of a thread and
switching from a thread to another are expensive operations because they in-
volve going through an operating system call. So, instead of blocking threads,
the finishing of each asynchronous operation needs to trigger a callback that
would call the function that launches the next asynchronous operation.

Finally, the framework must be a pure library, without needing any special
support from the programming language, such as coroutines. Coroutines are
indeed very useful for describing an asyncronous function that calls other
asynchronous function, and languages like C# and Python support this via
the async-await mechanism: the asynchronous function is declared async, so
that the compiler or interpreter knows it should be implemented as a coroutine,
and, when the function calls some other asyncrounous function, its coroutine
gets suspended until the called asynchronous operation completes, at which
time the coroutine resumes. This allows the programmer to write code almost
as if it were ordinary sequential code. However, some languages do not support
coroutines and, even though recent C++20 does, there are systems where, for
various reasons, upgrading to C++20 is not possible.

We choose C++ language for implementing the framework.

4.1. Basic building blocks. First, the basic building blocks will be asyn-
chronous functions. Each asynchronous function will return a future, that
completes when the asynchronous operation completes.

The future mechanism needs to allow the possibility to hook to a future a
callback that gets executed when the future completes.

4.2. Sequence. In a sequence of asynchronous calls, each asynchronous oper-
ation would start after the previous one finishes. The full sequence becomes an
asynchronous operation that completes when the last asynchronous operation
of the sequence completes.

The basic support for a sequence is the future with continuation mechanism,
described in section 3.

46 RADU LUPŞA AND DANA LUPŞA

The C# ContinueWith() operation, or its equivalent then() in the C++
standard proposal, takes a future, representing the result of a first asynchro-
nous operation, and a function and returns a future that will get the result of
the second operation.

However, looking at the continuation enqueueing operation from the com-
posability perspective, there are two aspects to be noticed.

First, the function for the second operation in the sequence takes as argu-
ment a future (a Task, in C#) instead of its value.

Second, the original ContinueWith() returns a future that completes when
the function passed as argument returns. This works if the continuation is a
synchronous function. However, if the function is asynchronous, the result of
ContinueWith() is a future that completes when the second operation starts.
The value of that future is a second (inner) future and its value is what the
user code is interested in. C# provides a function called Unwrap() that creates
and returns a future that completes when the inner future completes.

The C++ proposed then() function does the unwrap automatically, if the
continuation function returns a future.

As an example, consider an asynchronous function that looks up in some
database. For simplicity, let both the key and the value be of type int,
and that we want the asynchronous equivalent of a synchronous code like
lookup(lookup(k)). Then, the asynchronous version of lookup needs to be
declared as
Task<int> AsyncLookup(int)

and the usage would be
Task<int> result = AsyncLookup(k).

ContinueWith((Task<int> arg) => AsyncLookup(arg.Result)).

Unwrap()

The last Unwrap() is needed because the future returned ContinueWith()

completes when the second lookup starts. Its value is a second future, that
completes when the second lookup completes, and the value of that inner
future is the result of that second lookup — which is what we are interested
in.

Java’s CompletableFuture [2] offers two distinct functions for adding a
continuation to a future, thenApply() and thenCompose(), the first behaving
like C#’s ContinueWith() and the second like ContinueWith() followed by
Unwrap().

Standard C++ futures do not offer continuations, but there is a proposed
then() function on a future that does an automatic Unwrap() if and only
if the continuation function returns a future, thus being assumed to be an
asynchronous function.

The equivalent implementation of the double lookup above using the C++
standard proposal would be:

ON COMPOSING ASYNCHRONOUS OPERATIONS 47

std::experimental::future<int> result = AsyncLookup(k).

then([](std::experimental::future<int> arg) {

return AsyncLookup(arg.get());

});

We propose here some small modifications that, while mostly cosmetic, em-
phasize on composability. Our continuation enqueueing operation is declared
as:
template<typename R, typename Func, typename Arg>

Future<R>

addAsyncContinuation(Executor& executor, Func func, Future<Arg> fArg)

Aside from the explicit specification of the thread pool used for executing
the continuation (executor) and the fact that addAsyncContinuation() is a
stand-alone function (not a class member), the differences are that func takes
a simple value of type Arg (not Future<Arg>), and the returned Future<R>

completes when the asynchronous operation completes.
The above example becomes:

Future<int> tmp = AsyncLookup(k);

Future<int> result = addAsyncContinuation<int>(executor, AsyncLookup, tmp);

4.3. Conditional. Implementing an if-then-else can be done in a straight-
forward way even without framework support. An asynchronous function
implementing an if-then-else could have the following structure:
Future<int> conditional() {

Future<int> f1 = foo();

Future<int> f2 = addAsyncContinuation<int>(executor,

[](int v) -> Future<int> {

if(v>0) {

return thenFunc(v);

} else {

return elseFunc(v);

}

}, f1);

}

4.4. Loop. Creating a loop around an asynchronous function is the main con-
tribution of this paper. While the other structured programming constructs
are relatively easy to obtain from the continuation enqueueing operation, cre-
ating a loop is much harder.

The need for loops arise in many places. For example, consider reading and
parsing data coming via a connection. Suppose that reading bytes is provided
as an asynchronous operation. Also, suppose that one needs to implement
parsing as an asynchronous operation, that returns a parsed value (an integer,
or some more complex object). To obtain that, the parsing operation would
have a loop where it starts a read and, when the read completes, parses the
read data and, if not complete, starts a new read and repeats.

48 RADU LUPŞA AND DANA LUPŞA

As another example, handling a client from a server is also a loop where a
(parsed) request is read, the response is sent, and the cycle repeats until the
connection is closed or the request is to terminate the connection.

The basic loop construction needs a loop condition and a loop body.
Similarly with the case of the sequence, the body of the loop will be a

function that launches an asynchronous operation and returns a future.
The asynchronous operation for each iteration is started after the asynchro-

nous operation for the previous operation completes. Additionally, to pass
information from one iteration to the next, the function acting as the loop
body takes a value of some type and returns a future of the same type, whose
value is passed to the loop body for the next iteration.

For the loop condition, we will use a synchronous function, taking as the
value the value passed from one iteration to the next.

Putting all together, the result is a framework function declared as follows:

template<typename R, typename LoopFunc, typename PredicateFunc>

Future<R> executeAsyncLoop(Executor& executor, PredicateFunc loopingPredicate,

LoopFunc loopFunc, R const& startValue)

The startValue argument is the initial value to be checked by the predicate
function and to be passed to the loop body function for the first iteration.
Consequently, executeAsyncLoop() creates an asynchronous function, taking
a value — that is passed as the initial value for the loop body — and returning
a future — that completes when the loop ends and receiving the returned value
from the last iteration.

The following is a simple example of how a loop can be created. The
function delayedResult() returns a future that is completed with the value
given as the last argument after a time given as the second argument (1000)
after it starts. The loop will thus count up to 10 with each step taking the
given amount of time.

Future<int> f = executeAsyncLoop<int>(executor,

[](int v)->bool {return v < 10;},

[&alarmClock](int const& v)->Future<int> {

return delayedResult(alarmClock, 1000, v + 1); },

0);

To test in a slightly more realistic scenario, a small demonstrative server was
implemented. The server repeatedly reads two integers (as sequences of digits)
and responds with their sum. Below is a small excerpt that demonstrates the
usage of the asynchronous loop:

Future<bool> executeOneRequest() {

Future<int> fa = m_reader.readInt();

Future<int> fb = addAsyncContinuation<int>(*m_pExecutor,

[this](int a)->Future<int> {

if(a > 0) return m_reader.readInt();

ON COMPOSING ASYNCHRONOUS OPERATIONS 49

return completedFuture<int>(0);

}, fa);

Future<bool> result = addAsyncContinuation<bool>(*m_pExecutor,

[this,fa](int b) -> Future<bool> {

if(fa.get() > 0) {

int sum = fa.get() + b;

std::shared_ptr<std::string> pSumStr =

std::make_shared<std::string>(std::to_string(sum) + "\n");

return m_pSocket->send(pSumStr);

} else {

return completedFuture<bool>(false);

}

}, fb);

return result;

}

Future<bool> run() {

return executeAsyncLoop<bool>(*m_pExecutor,

[](bool b){return b;},

[this](bool b){return executeOneRequest();},

true);

}

The the function executeOneRequest() launches an asynchronous oper-
ation that reads two integers over the socket and sends back their sum. It
uses in turn other asynchronous functions for receiving and for sending data
over the socket (readInt() and send()). The function immediately returns
a boolean future that completes with true after the sum has been sent. The
future completes with false if the client closes the connection or if an error
occurs. Then, the run() function does the complete handling of a client: it
returns a future that completes when the handling of the client is over (either
because the client disconnects or because an error occurs.

The pattern solved by the executeAsyncLoop() is thus repeatedly calling
an asynchronous operation that pulls data from a source (a connection, for
instance) or pushes data into a sink.

Obtaining the same effect without executeAsyncLoop() is possible, but
tedious. The implementation of the function run() from above, with C#
TPL, would be (a helper function, loopBody(), is needed):

void loopBody(TaskCompletionSource result) {

Task.Factory.StartNew(executeOneRequest)

.ContinueWith((Task<bool> execResult) => {

if(execResult.Result) loopBody(result);

else result.SetResult();

}

}

50 RADU LUPŞA AND DANA LUPŞA

Task run() {

TaskCompletionSource ret = new TaskCompletionSource();

loopBody(ret);

return ret;

}

One difficulty that should be noted about this example is that there are a
lot of shared pointers. They are needed because of the asynchronous nature of
the code. The actual functions usually only do some setup, so local variables
will be long gone when the actual computation happens. Note that this is not
a characteristic of the framework, but rather a common issue of asynchronous
functions.

4.5. Exceptions. In regular programming, exceptions provide a mechanism
for easily exiting from the structures.

Providing the same mechanism for asynchronous programming requires sev-
eral elements which we will present below.

First, the futures can complete in two modes: with a value or with an
exception.

Next, the sequence stops if a step completes with an exception. The next
steps are skipped, but the sequence result completes with the same exception.
Concretely, this means that, for addAsyncContinuation(), if the future given
as argument completes with an exception, the returned future completes with
that exception without the function argument being called.

Note that this behavior is quite distinct from what C# TPL is doing. In
C#, if a Task completes with an exception and its continuations are set to
execute only on normal completion, then the continuations resulting Tasks
complete as canceled. This means that, in order to get the exception, one
needs to examine the Task corresponding to the failed operation; subsequent
Tasks have no information on the exception.

Similarly to addAsyncContinuation(), for executeAsyncLoop(), if the
body completes with an exception, the loop stops and the future returned
by executeAsyncLoop() completes with that exception.

Finally, the equivalent of the try-catch mechanism is also needed. Our
framework provides a function declared as

template<typename T, typename CatchFunc>

Future<T>

catchAsync(Executor& executor, CatchFunc catchFunc, Future<T> value);

Its catchFunc argument must be an asynchronous function taking an
std::exception ptr and returning Future<T> and gets the role of the catch
block. The semantic of catchAsync() is the following:

• It immediately returns a future;

ON COMPOSING ASYNCHRONOUS OPERATIONS 51

• If value completes normally, the future returned from catchAsync()

completes with the same value;
• If value completes with an exception, catchFunc() is called with
that exception as argument and the future returned by catchAsync()
will complete with the value (or exception) returned (respectively
thrown) by catchFunc().

Using exceptions, the small server of the previous section can be re-written
in a simpler way, eliminating the repeated checks that the state of handling
the client is still normal, and instead relying on the “fast exit” mechanism of
the exceptions:

Future<bool> executeOneRequest() {

Future<int> fa = m_reader.readInt();

Future<int> fb = addAsyncContinuation<int>(*m_pExecutor,

[this](int a)->Future<int> {

if(a < 0) {

throw Flag::client_disconnected;

}

return m_reader.readInt();

}, fa);

Future<bool> result = addAsyncContinuation<bool>(*m_pExecutor,

[this,fa](int b) -> Future<bool> {

if(b < 0) {

throw Flag::invalid_input;

}

int sum = fa.get() + b;

std::shared_ptr<std::string> pSumStr =

std::make_shared<std::string>(std::to_string(sum)+"\n");

return m_pSocket->send(pSumStr);

}, fb);

return result;

}

5. Conclusions

We developed, and presented here, a framework for using the futures with
continuations mechanism in a way very similar to the classical, structured
style, programming. This way, programs using asynchronous calls look rea-
sonably similar to regular programs, and this is probably the best that can
be achieved without language support like coroutines. Its central point is the
asynchronous loop mechanism.

As a limitation, the lifetimes of the variables are not very obvious, and
shared pointers are required almost everywhere because of this. This is not
a limitation of the framework per se, but a result of the asynchronous work

52 RADU LUPŞA AND DANA LUPŞA

model. A study of possible improvements in this area may come as a future
work.

Yet another future direction would be to attempt to use the looping mecha-
nism to produce or to consume a stream of values, in the reactive programming
style.

References

[1] C++ reference. extensions for concurrency.
https://en.cppreference.com/w/cpp/experimental/future/then. Accessed: 2023.

[2] Java Platform, Standard Edition 8 API Specification, CompletableFuture .
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/

CompletableFuture.html. Accessed: 2023.
[3] David Pine, e. a. Task parallel library (tpl).

https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/

task-parallel-library-tpl, 2022. Accessed: 2022.
[4] Duan, J., Yi, X., Wang, J., Wu, C., and Le, F. Netstar: A future/promise frame-

work for asynchronous network functions. IEEE Journal on Selected Areas in Commu-
nications 37, 3 (2019), 600–612.

[5] Elizarov, R., Belyaev, M., Akhin, M., and Usmanov, I. Kotlin coroutines: Design
and implementation. Onward! 2021, Association for Computing Machinery, p. 68–84.

[6] Haller, P., and Miller, H. A reduction semantics for direct-style asynchronous
observables. Journal of Logical and Algebraic Methods in Programming 105 (03 2019).

[7] Howes, L., Grynenko, A., and Feldblum, J. Continuations without overcom-
plicating the future. https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/
p0783r0.html, 2017. Accessed: 2022.

[8] Lab, A. S. T. stlab: Api documentation. futures.
https://stlab.cc/libraries/concurrency/future/. Accessed: 2023.

[9] Liskov, B., and Shrira, L. Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. In Proceedings of the ACM SIGPLAN 1988 Con-
ference on Programming Language Design and Implementation (New York, NY, USA,
1988), PLDI ’88, Association for Computing Machinery, p. 260–267.

[10] Manolescu, D. A. Workflow enactment with continuation and future objects. 40–51.
[11] Marshall Cline, e. a. A unified futures proposal for c++. https://www.open-std.

org/jtc1/sc22/wg21/docs/papers/2018/p1054r0.html, 2018. Accessed: 2022.
[12] Meyers, S. Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11

and C++14, 1st ed. O’Reilly Media, Inc., 2014.
[13] N., G., A., L., H., S., and S., M. A standardized representation of asynchronous

operations, tecnical report n3538. https://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2013/n3558.pdf, 2013. Accessed: 2022.

[14] Radu, L. futures-demo https://github.com/rlupsa/futures-demo, 2023.
[15] Ranaldo, N., and Zimeo, E. Analysis of different future objects update strategies in

ProActive. In 2007 IEEE International Parallel and Distributed Processing Symposium
(2007), pp. 1–7.

Computer Science Department, Babeş Bolyai University, Cluj-Napoca, Roma-
nia

Email address: radu.lupsa@ubbcluj.ro, dana.lupsa@ubbcluj.ro

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://learn.microsoft.com/en-us/dotnet/standard/parallel-programming/task-parallel-library-tpl
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0783r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0783r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1054r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1054r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3558.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3558.pdf
https://github.com/rlupsa/futures-demo

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVIII, Number 2, 2023
DOI: 10.24193/subbi.2023.2.04

FACILITATING MODEL TRAINING WITH AUTOMATED

TECHNIQUES

BOGDAN-EDUARD-MĂDĂLIN MURSA, MÁTYÁS KUTI-KRESZÁCS,
CRISTIANA MOROZ-DUBENCO, AND FLORENTIN BOTA

Abstract. Automating artificial intelligence (AI) model training has emerged
as a significant challenge in the field of automation. The complete pipeline
from raw data to model deployment poses the need to define robust pro-
cesses that ensure the efficiency of the services that expose the models.
This paper introduces a generic architecture for automating data prepara-
tion, training of models, selection of models, and deployment of models as
web services for third-party consumption using Microsoft Azure Machine
Learning’s (AzureML) CI/CD tools. We conducted a practical experi-
ment utilizing AzureML pipelines with predefined and custom modules,
demonstrating its readiness for integration into any production applica-
tion. We also successfully integrated this architecture into a real-world
product designed for industrial forecasting. This practical implementation
demonstrates the effectiveness and adaptability of our approach, indicating
its potential to address diverse training needs.

1. Introduction

Over the past decade, Artificial Intelligence (AI) has evolved from a buz-
zword to a state-of-the-art technology, providing reliable solutions in various
domains such as fraud detection, healthcare, predictive maintenance, energy
management, and retail. AI applications are now being used as stand-alone
solutions in businesses’ core processes. However, as the demand for AI grows
exponentially, traditional processes for training AI models, which were once
characterized as academic experiments, have now become a logistical prob-
lem. There is a need to migrate to reliable processes that can automate all

Received by the editors: 29.06.2023.
2010 Mathematics Subject Classification. 68T01.
1998 CR Categories and Descriptors. D.2.11 [SOFTWARE ENGINEERING]:

Software Architectures – Patterns (e.g., client/server, pipeline, blackboard); I.2.1
[ARTIFICIAL INTELLIGENCE]: Applications and Expert Systems – Industrial au-
tomation .

Key words and phrases. Artificial Intelligence, Automation, Optimization.

53

54 B.E.M. MURSA ET AL.

the steps, from cleaning a raw dataset to training the model and exposing it
to other services that can consume it in real-world scenarios [12, 14, 26].

Moreover, there has been an emphasis on the necessity of creating user-
friendly interfaces for software developers without an AI background, which
can facilitate the maintenance of the AI processes encapsulated in modules,
following the principles of gray-box. These requirements have already been
addressed in the domain of software engineering, particularly in web program-
ming, using the Continuous Integration/Continuous Deployment (CI/CD) mech-
anism and web services. In this paper, we present the latest advancements in
automating AI model training using AzureML’s CI/CD tools. Our approach
allows for the automation of data preprocessing, training various AI models
and selecting the best performing one, deploying the model as a web service
for third-party consumption, while ensuring high availability and scalability
of the service.

Our proposed solution was implemented and validated through an academic-
industrial partnership aimed at developing a forecasting platform for industrial
indicators. Subsequently, we present a comprehensive review of the logistics
and challenges associated with AI model training (Section 2), followed by an
overview of state-of-the-art techniques and successful applications of automat-
ing the AI model training process in various industries (Section 3). In Section
4, the final section of this paper, we describe our proposed generic architecture
to automate the model training and deployment process using AzureML.

2. Problem definition

Developing a machine learning based solution in an industrial environment
consists of two steps: building the model and deploying it into production.
While the first part might be more interesting, it is the second part that takes
the longest - all the tasks that come after a model is built and optimized.
According to Gartner [1], one of the top five factors due to which 85% of Big
Data projects fail is the complexity to deploy them.

Algorithmia’s “2021 State of Enterprise ML” [3] reports that 64% of all
organizations need at least one month to deploy a machine learning model
and that the data scientists from 38% of organizations spend more than 50%
of time deploying ML models to production.

According to [4], the development of a machine learning based solution in
an industrial environment can be split into four stages. Each of these stages
can be split into smaller steps, and [20] presents various issues and concerns
associated to each step, as explained below.

The first stage concerns data management - preparing the data. Data is
collected, gathered and understood. Problems can appear especially in large

FACILITATING MODEL TRAINING PROCEDURES 55

production environments, where, using the principle of ”single responsibility”
[16], applications are usually built as multiple services communicating to each
other, and this can easily lead to data being stored in different locations and
forms by different services. After collection, data has to be cleaned and, ac-
cording to [13], data cleanliness is the main reason causing expert to doubt the
quality of their work. Insufficient, biased, noisy, irrelevant or imbalanced data
can lead to either the under- or overfitting of the model. Moreover, if multi-
ple data sources have to be integrated into a single one, they might differ in
schema, convention or the procedure of storing and accessing the data. Once
the data is preprocessed, it might be necessary to be augmented because in
real life, more often than not, data is unlabeled and, since supervised learning
techniques require labeled data for training, the process of assigning labels to
large volumes of data can be a tedious task. And, finally, the labeled data has
to be analysed in order to discover biases or unexpected distribution shifts.
One area that is especially challenging in this step is visualization for data
profiling, since there are very few tools available for efficiently executing this
task.

The following stage is about model learning. Firstly, the best-fitted model
for the problem at hand needs to be chosen. As shown in [28], complexity
is one of the most important factors when choosing a model to be used in
an environment with resource constraints. In practice, simpler models, such
as Decision Trees, Random Forests, Principal Component Analysis etc., are
chosen instead of deep learning or reinforcement learning techniques because
they require less resources and also lead to an decreased development and de-
ployment time. Moreover, depending on the field of application, being able
to interpret the output of a machine learning model can outbalance even its
performance. Then, the model has to be trained. This step usually requires in-
creased computational resources, which leads to increased costs. For instance,
in [25], it is shown that the training of the BERT model [7] costs at least $50
K, which can be impossible to afford for many companies. Even more, chal-
lenges can arise while selecting hyper-parameters in order to find the optimal
setting for the model. The size of the hyper-parameter optimization task can
grow exponentially in the worst case, leading to tough computational chal-
lenges. Mainly when talking about deep learning techniques, this process can
be extremely expensive and resource-heavy.

Once the model is trained, it must be verified. This stage involves defin-
ing requirements for the model, which should not solely prioritize increased
model performance but also consider business-driven metrics for evaluating
and monitoring the model in a production environment. Verification of all
requirements is necessary, including adherence to business-defined regulatory

56 B.E.M. MURSA ET AL.

frameworks, in addition to mathematical correctness or error bounds. Testing
the model in a real-life setting is ideal for ensuring quality, but this can pose
challenges regarding safety, security, and scaling.

And, finally, the last stage in the development of an ML-based solution in
industrial environments is the deployment of the model. The model has to
be implemented so that it can be consumed and an infrastructure for running
the model needs to be built. Due to the fact that machine learning models
can explicitly depend on external data, a lot of engineering anti-patterns, such
as correction cascades, are widespread in software that uses ML [24]. Once
the system is deployed to production, its maintenance intervenes. The system
has to be monitored, but this process is still in the early stages within the
ML community, and monitoring the overall performance of a machine learn-
ing model is still an open problem. Yet, the biggest challenge emerges when
the existing models needs to be adapted to new data and the new model arti-
fact delivered to production. While software engineering solves this problem
using continuous delivery, things are more complicated with machine learning
problems because, unlike regular software products that only have changes in
code, ML solutions can be changed on three aspects: data, model, and code.

Therefore, we can state that the process of developing machine learning
based solutions in production environments requires not only skills and time,
but also new and emerging technologies that can ease the process.

3. Advances in Automated AI Training

Recently, AI has emerged as a cutting-edge technology with numerous use
cases across diverse industries. AI models have been employed either as novel
solutions to problems, as assisting systems, or as complete replacements for
human intervention. However, this rise in demand has revealed certain chal-
lenges, such as the necessity for dependable model training, deployment, and
real-time production consumption mechanisms. Large cloud service providers
have promptly identified this demand and addressed it by offering a compre-
hensive suite of tools that facilitate large-scale AI model training and deploy-
ment. Furthermore, modern CI/CD mechanisms [15] have been integrated to
ensure scalable solutions that meet the needs of high availability, performance,
and logging.

AzureML [18], a cloud-based machine learning platform developed by Mi-
crosoft, provides a comprehensive suite of tools necessary for the implementa-
tion of artificial intelligence models for various use cases. With its ability to
integrate with different AI model architectures, it has been utilized by several
large companies as a trusted ecosystem for the entire pipeline from train-
ing to deployment. For instance, American Express uses AzureML to develop

FACILITATING MODEL TRAINING PROCEDURES 57

apps for fraud detection, Mediktor employs it for healthcare solutions to check
symptoms, E-ON applies it to manage energy in solar panel farms and predict
energy solutions, Belfius uses it to help detect fraud and money laundering,
Cognizant and Claro personalize and improve users’ learning experience with
AzureML and Epiroc advances manufacturing innovation with its help [19].

On the other side, AzureML gains popularity in the scientific literature as
well. [22] analyzes eight two-class and three multi-class machine learning al-
gorithms for network intrusion detection using AzureML as a solution to the
limitation of traditional models, which focus rather on the improvement of
the attack detection rate and the reduction of false alarms rather than on
time efficiency. The proposed algorithms are analyzed and evaluated not only
on their performance related to the task, but also in terms of training and
prediction time, concluding that the use of AzureML leads to saving compu-
tational resources and, thus, reducing excessive costs. Moreover, the study
highlights the fact the AzureML is useful for large datasets handling, as it can
successfully serve as an expedient Integrated Development Environment.

In [23], a data-driven machine learning workflow is proposed for forecast-
ing the outcome of Business to Business (B2B) sales. The workflow was im-
plemented and deployed to a B2B consulting firm’s sales pipeline using the
AzureML platform. This cloud-based solution was chosen because it can be
easily integrated into existing Customer Relationship Management (CRM)
systems allowing for more scalability than traditional solutions. What is more,
AzureML supports the creation of models’ endpoints on Azure Kubernetes Ser-
vice, which ensures high scalability and low latency for request-response ser-
vice, therefore being suitable for production-level deployments. The authors
conclude that the AzureML-based workflow is also highly sustainable due to
relying on cloud computing power, rather than on on-premise resources.

As a solution for the task of designing the complex systems that an electrical
machine consists of, [21] employ AzureML as a means of optimization and best
candidate selection. That is, the platform was used to compare two searching
algorithms, namely Boosted Decision Tree and Multiclass Neural Network, in
order to predict the best configuration of an electric motor according to the
maximum efficiency. The advantages presented by the usage of the platform
as compared to the tools used on the developers’ local computers consist in the
10-times decrease in work time and the simplification of the project creation,
taking 15 minutes instead of 3 days.

In [27], one of the main capabilities of the AzureML platform is presented
in-depth: automated machine learning. In order to help developers with little
ML-related knowledge to build solutions that employ ML models, AzureML
provides the possibility of using automated ML, such that developers do not

58 B.E.M. MURSA ET AL.

need to fully understand the processes of selecting the learning algorithm or
tuning the hyper parameters. Being given a dataset and only a few configu-
ration parameters, AzureML can provide a high-quality, already trained, ML
model that can be used for predictions, without further modifications.

The paper [8] once again demonstrates the advantages of the automated ma-
chine learning capability of the AzureML platform. Being applied in medical
environment, specifically, for predicting antimicrobial resistance and selecting
appropriate treatment, the benefit of automated ML presents itself. This pa-
per presents a procedure that is easy applicable and, most importantly, can
be explained and even used by non-technical experts, leading to the conclu-
sion that AzureML can be used as a decision tool for physicians, the deduced
models proving good performance.

In this paper, we describe our process of training a scalable number of AI
models for a generic forecasting platform. Alike explained in [22], with our
approach, we also intend to reduce the computational costs and use a solution
that easily handles large datasets. Since we need high scalability and low
latency and, most importantly, an architecture that is suitable for production-
level deployments, our choice is based on the same reasons as presented in
[23]. Similar to the work presented in [21, 27, 8], we need to train multiple AI
models and choose the one that yields the best results. And, finally, the most
notable characteristic of the AzureML platform that motivates the choice of
AzureML for all of the presented solutions, including our own, is the possibility
of being used even by non ML-specialized developers. For all of these reasons,
our proposed procedure is inspired by these successful stories of AzureML’s
deployment, combining and adjusting the parts that suit our needs.

4. Automating Model Training Process

The present section provides an overview of an experiment that involves
utilizing the most advanced state-of-the-art guidelines to define and construct
a sturdy pipeline comprising all necessary steps required for training a model,
using one or more datasets, and deploying it onto an infrastructure to enable
real-time consumption by clients. Our objective is to streamline the conven-
tional process of training AI models, enabling individuals without specialized
expertise to train and deploy models through an automated procedure to the
greatest extent possible.

The following sections will elaborate on an anonymous methodology that
our university team employed while collaborating with a company operating
in the IT industry that sought assistance in the field of artificial intelligence.
Given that our deliverable was intended for utilization in a live production
environment, our aim was to incorporate, right from the beginning, techniques

FACILITATING MODEL TRAINING PROCEDURES 59

used within the software development industry, which enable principles such
as scalability, versioning, monitoring, and high availability. By implementing
such techniques, we intended to ensure the functionality and effectiveness of
our deliverable in a demanding production environment.

Furthermore, within the scope of our collaboration, we agreed to deliver
a preliminary product consisting of a series of trained neural networks, and
in parallel, we developed a protocol for knowledge transfer that enabled the
company to take ownership of the pipeline process that we had designed.
As the company’s team of developers lacked expertise in the field of artificial
intelligence, we developed a grey-box mechanism that allowed them to not only
implement future model training but also edit and enhance modules defined
within the pipeline. To accomplish this, we proposed a generic process with
easily generalized steps that could be assembled into a framework with user-
friendly features. We initiated this approach from the very beginning of the
project to ensure that the process could be readily integrated into the existing
framework, and easily manipulated like a puzzle.

After brainstorming with the architect of the company, we reached an agree-
ment on a solution that was compatible with their current technology stack.
This solution entailed using Microsoft AzureML as a framework to define mod-
ules, which were coded in Python, to facilitate data storage, data cleaning and
augmentation, model training, and model deployment. Through this solution,
we aimed to create a cohesive and efficient pipeline for the company, which
would facilitate the utilization of the current technology stack, while also en-
hancing the process of developing and implementing AI models.

4.1. Pipelines architecture. During the architecture brainstorming pro-
cess, one of the most important considerations was the business requirement
of receiving various datasets from clients and subsequently triggering the
pipeline. These datasets were sourced from diverse warehouses and in dif-
ferent formats, including SQL databases, NoSQL databases, and files. Conse-
quently, a layer was required to abstract the source of the training data and to
allow for pipeline interaction, providing an interface that exposed simple data
downloading operations, but also the uploading of the results. This approach
enabled us to provide a seamless and flexible pipeline that could process a
wide range of data sources, while also facilitating the integration of multiple
data sources into the pipeline. In this particular case we can consider that
these modules will receive the dataset as input, and output it with the data
processing operations applied.

Figure 1 represents an overview of the proposed pipeline that represents a
state-of-the-art mix between software engineering principles in CI/CD deploy-
ments and procedures of AI model training. After defining the data interface,

60 B.E.M. MURSA ET AL.

Figure 1. Generalized architecture of a model training pipeline

we proceeded to develop a series of modules that would code the state-of-the-
art operations required in the process of training an AI model. Each module
was defined through an interface, and each model had an input and output, en-
abling seamless assembly within the desired pipeline. To initiate the pipeline,
we first defined modules for the most well-known operations of data process-
ing, beginning with data cleaning (i.e., removing empty values, deduplication,
and filling incomplete data), data augmentation (i.e., one-hot encoding of cat-
egorical columns or data normalization), and column selection (i.e., selecting
only specific columns if needed). Through this process, we aimed to establish
a flexible and scalable pipeline capable of performing various data processing
operations to facilitate the effective and efficient training of AI models.

After the data cleaning process, the next step in our pipeline involved model
training. This stage was comprised of an umbrella module that encapsulated
various sub-models, each representing a different type of model such as neural
networks, logistic regressions, decision trees, and many others. The module
initiated the training of all these models and subsequently chose the model
with the highest metric, which was determined based on its accuracy. The
output of this pipeline module was a flexible binary file that could be deployed
in the subsequent stage of model deployment.

To expose the trained binary model to other components of the company’s
software stack, we implemented a mechanism that allowed for the input of
new data and retrieval of inferred results. Following best practices in web
development, we decided to utilize microservices due to their capabilities in
high availability, versioning, and scalability.

FACILITATING MODEL TRAINING PROCEDURES 61

Following the architecture described, we propose a hands-on application
of Microsoft AzureML pipelines and its features following the state-of-the-art
CI/CD principles that will enable the desired automatization of the AI tasks
[9, 11, 5].

4.2. AzureML Pipelines. The Microsoft AzureML platform represents a
significant advancement in cloud-based technology, providing users with a
range of functionalities for data processing, model training and versioning,
and large-scale deployment. Given our architectural requirements and project
needs, AzureML proved to be a highly suitable solution for our work.

AzureML’s pipeline designer functionality is a low-code/no-code solution for
developing machine learning pipelines both for model training and prediction.
The visual components enable the configuration of the pipelines, which can
be performed with limited knowledge of the underlying transformations and
ML algorithms. Also, its pre-built infrastructure with curated environments
allows us to run these pipelines with minimal maintenance overhead, while its
versatile suite of features enabled us to develop the necessary modules for our
project. The visual pipeline designer and the managed infrastructure with
curated environments in the AzureML platform provide an innovative and
efficient solution for organizations seeking to streamline their AI workflow and
improve the efficiency of their operations.

Microsoft AzureML provides another crucial interface for managing the vari-
ous datasets utilized by clients, through the implementation of Azure Datasets.
This functionality allows for the loading of datasets in tabular format from
diverse sources, including both internal and external data repositories. More-
over, an Azure Dataset can be versioned, and its creation can trigger the
execution of associated pipelines. To illustrate the practical application of
these concepts, Figure 2 presents a diagram of a simulated AzureML pipeline.
While we are unable to provide detailed insights into the proprietary work
conducted with external collaborators, we can attest that the principles guid-
ing the construction of this pipeline align with the ones from the original
experiments.

The demo pipeline depicted in Figure 2 begins with an Azure Dataset that
serves as the primary input for subsequent data processing steps. Specifically,
the pipeline executes a sequence of data processing modules, including column
selection, missing data removal, and data splitting. The data splitting module
divides the input dataset into separate training and testing sets, which are
subsequently fed into a training module for model development. Each module
contains customizable properties that can be adjusted according to specific
user needs. For instance, the percentage of data allocated to the training and
testing sets in the data splitting module can be configured as needed.

62 B.E.M. MURSA ET AL.

Figure 2. Example of Microsoft AzureML pipeline imple-
menting the generalized architecture

Following the initial data processing steps, the next group of modules in the
pipeline pertains to the training of multiple AI models, specifically regression
models from the family of decision trees. Each model is trained using the
designated training set via the Train Model module, and subsequently tested
using the testing set through the Score Model module. At the conclusion of
this phase, the Evaluate Model module is employed to compare and assess
the performance of each trained model, with the ultimate goal of identifying
the optimal model. An established threshold can then be used to determine
whether the best-performing model meets the requirements of the business
case. If the model surpasses the predefined threshold, it may be deployed
for use in a production environment. Thus, through the use of these modules,
AzureML enables the efficient development, testing, and evaluation of multiple
AI models, with the ultimate aim of identifying the best solution for a given
task.

FACILITATING MODEL TRAINING PROCEDURES 63

The flexibility and extensibility of AzureML is further exemplified through
its open library of built-in components, maintained by a vibrant and sup-
portive community. For many use cases, the built-in components satisfy the
necessary requirements for developing machine learning models. However, in
cases where specific and proprietary steps are required, developers may lever-
age the Python programming language and the azureml library to implement
custom-built components. In the context of our collaboration with external
clients, we designed and developed a series of neural networks (specifically,
LSTM [10] and GRU models [6]) that were customized and optimized to suit
the needs of our collaborators. These models were then deployed as custom
components within the AzureML pipelines we developed. While the modules
and components we implemented are tailored to our specific use case, they
still follow the overarching principle of letting the models compete to deter-
mine a winner, based on their respective levels of accuracy. By providing the
ability to use both pre-defined components and implement custom-built ones,
AzureML affords significant gains in both performance and maintainability for
AI development, even for non-specialized developers.

4.3. Automating models training and deployment. To achieve a robust
ecosystem for model training and deployment, it is essential to have a well-
structured and automated pipeline that can respond to a series of events,
validate models against a predefined threshold, and initialize model deploy-
ment as a new version only when the threshold is exceeded. To ensure a
smooth and efficient process, the proposed pipeline must adhere to the princi-
ples of CI/CD, which provide a set of protocols for training machine learning
models in real-time and deploying them with high availability and scalability
using the infrastructure provided by AzureML. By following the principles of
CI/CD, the pipeline can be structured to streamline the model development
process, reduce overhead costs, and maximize the return on investment for the
AI development process. In general, the CI / CD principles are essential to
ensure that the model training and deployment pipeline is robust and scalable,
facilitating the rapid deployment of models with minimal interruption to the
overall workflow.

Figure 3 depicts the proposed automated mechanism of model training using
CI/CD in the Microsoft AzureML ecosystem. The CI/CD system is triggered
whenever a change is made to the Azure Dataset associated with the pipeline,
indicating the availability of a new dataset for training. The system then pulls
the latest version of the dataset and initiates the pipeline, as described in the
previous section. Notably, the components in the pipeline will be parallelized
if they are on the same level in the hierarchy, allowing all model training to

64 B.E.M. MURSA ET AL.

Figure 3. CI/CD proposed for the automatized model train-
ing pipeline.

be executed simultaneously, thus saving time and resources and, therefore,
leading to cost savings.

In the post-training phase of the proposed CI/CD pipeline, the best model’s
accuracy will be compared to the threshold, which, if not reached, will trigger
a notification to the administrators to perform additional fine-tuning on the
training set or modify the components (e.g., by adding more cleaning meth-
ods). On the other hand, if the threshold is exceeded, the best model will
be packaged as a binary model encapsulated into a Dockerized web microser-
vice [17]. This microservice will be deployed on the AzureML infrastructure
as a service, which will expose the model through an endpoint. This process
ensures that the model is readily available to be consumed by other services.

Figure 4. AzureML pipeline adjustment to package model as
a webservice.

In the context of AzureML, the mechanism of packaging a trained model
can be achieved by using two key components, namely the Web Service Input
module and the Web Service Output module, as depicted in Figure 4. These
components enable AzureML to recognize that the output of the Train Model
section is intended to be encapsulated in a web service. The Web Service

FACILITATING MODEL TRAINING PROCEDURES 65

Input component is responsible for receiving a set of input parameters, which
are then passed on to the component responsible for handling the input and
feeding it to the model for inference. The model output is then passed to the
Web Service Output component, which in turn returns the result to the service
that initiated the request.

Upon the completion of the CI/CD pipeline, the resulting web service can
be located in the AzureML Endpoints section, which provides all the necessary
details to interact with the model. In addition to supporting the deployment of
microservices, AzureML incorporates a range of features that are particularly
useful during the post-deployment phase, ensuring the high availability and
performance of the model. We consider two of these built-in features to be
extremely helpful: the fault tolerance - AzureML guarantees that at least one
instance of the web service will be operational at all times - and the automated
scaling - in situations where there is a high demand, the web service can be
scaled to multiple instances managed through a load-balancer.

The underlying infrastructure used for model training, validation, and de-
ployment can be configured to operate on either a CPU or a GPU. Typically,
GPUs are essential during the training phase. While GPU virtual machines
are considerably more expensive than those equipped with a CPU, weighing
the time required for model training against the hourly cost may result in a
cost-effective solution involving a GPU instance.

The proposed solution of using an AzureML pipeline for model training
and deployment is an automated mechanism that starts with the upload of a
new dataset version to the associated Azure Dataset and continues until the
last step of model deployment. This approach provides the benefits of an au-
tonomous and intuitive maintenance process, as every step of the pipeline is
executed automatically based on the defined logic. The pipeline and its deploy-
ment mechanism are suitable for web applications used in live environments,
fulfilling requirements such as availability, ease of maintenance and debugging,
and fast execution. The monitoring system also enables quick identification
and resolution of any issues. Thanks to all of these, the proposed solution of-
fers a comprehensive and reliable solution for automating the model training
and deployment process.

4.4. Consuming trained models. This section describes the deployment of
a model in AzureML as a microservice and the standardization of web ser-
vices or APIs using Swagger [2]. After a model is deployed, it can be accessed
through HTTP requests, and all relevant information regarding the web ser-
vice, such as the REST endpoint, authentication type, and monitoring logs,
can be found in the AzureML Endpoints section. Additionally, the web service
created via AzureML Pipelines includes its own documentation that provides

66 B.E.M. MURSA ET AL.

details on existing web service endpoints, their expected input structure, and
the expected output structure. Swagger is a popular standard for normalizing
web services or APIs, which is implemented in AzureML to enable language-
agnostic solutions. Therefore, any programming language that has an HTTP
framework can make requests to the model and expect output following the
structure described by its Swagger.

5. Conclusions

This paper provides an overview of the latest advancements in automating
the training of AI models and presents a scalable CI/CD architecture for in-
dustrial forecasting utilizing AzureML. Our aim is to develop a user-friendly
solution that is easily maintained by individuals with minimal experience in AI.
To this end, we conducted a practical experiment utilizing AzureML pipelines
with both pre-defined and custom modules, demonstrating its readiness for
integration into any production application. While presenting a quantitative
validation of our proposed solution may not be feasible, we deem the success-
ful integration of the architecture into the products of our collaborators, along
with their teams utilizing and maintaining the proposed automated pipelines
for various training purposes, as a valuable qualitative validation. This prac-
tical implementation demonstrates the effectiveness and adaptability of our
approach, indicating its potential to address various training needs.

Moving forward, we plan to enhance our solution by creating a separate
pipeline architecture dedicated to deploying external custom modules. This
will allow contractors with AI expertise to easily maintain and improve pipelines.
When a new module is created, it will be automatically deployed via the ded-
icated CI/CD pipeline for custom modules and added to the list of pipelines
for training models enabling the module for further use.

6. Acknowledgement

This research was partially supported by DataSEER project, financed through
POC 2014-2020, Action 1.2.1, by European Commission and National Gov-
ernment of Romania (Project ID: 121004).

The authors express their gratitude to the industrial partner, OPTIMA
GROUP SRL, for their collaboration and valuable information exchange.

References

[1] Gartner. https://www.gartner.com/en. Accessed: June 16, 2023.
[2] Swagger: The world’s most popular framework for apis. https://swagger.io, 2022.

Accessed: Feb. 7, 2022.

https://www.gartner.com/en
https://swagger.io

FACILITATING MODEL TRAINING PROCEDURES 67

[3] Algorithmia. 2021 state pf enterprise ml. https://info.algorithmia.com/hubfs/

2020/Reports/2021-Trends-in-ML/Algorithmia_2021_enterprise_ML_trends.pdf.
Accessed: June 9, 2023.

[4] Ashmore, R., Calinescu, R., and Paterson, C. Assuring the machine learning
lifecycle: Desiderata, methods, and challenges. ACM Computing Surveys (CSUR) 54, 5
(2021), 1–39.

[5] Boer, A., Koolen, M., van den Berg, J., and van der Werf, J. Continuous
delivery pipelines: Best practices in safe. In 2018 IEEE 15th International Conference
on e-Business Engineering (ICEBE) (2018), IEEE, pp. 217–224.

[6] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. Empirical evaluation of gated re-
current neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014).

[7] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018).

[8] Feretzakis, G., Sakagianni, A., Loupelis, E., Kalles, D., Skarmoutsou, N.,
Martsoukou, M., Christopoulos, C., Lada, M., Petropoulou, S., Velentza,
A., et al. Machine learning for antibiotic resistance prediction: A prototype using
off-the-shelf techniques and entry-level data to guide empiric antimicrobial therapy.
Healthcare informatics research 27, 3 (2021), 214–221.

[9] Fischer, D., Jung, M., Kasparick, M., and Momm, C. Continuous integration and
deployment for software of things using jenkins and docker: A case study. In 2019 IEEE
International Conference on Software Architecture Companion (ICSA-C) (2019), IEEE,
pp. 9–16.

[10] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural computation
9, 8 (1997), 1735–1780.

[11] Huang, W. Best practices for continuous integration and delivery. In 2016 11th Interna-
tional Conference on Computer Science & Education (ICCSE) (2016), IEEE, pp. 422–
426.

[12] Hutter, F., Kotthoff, L., and Vanschoren, J. Automated machine learning:
Methods, systems, challenges. arXiv preprint arXiv:1908.02259 (2019).

[13] Kim, M., Zimmermann, T., DeLine, R., and Begel, A. Data scientists in software
teams: State of the art and challenges. IEEE Transactions on Software Engineering 44,
11 (2017), 1024–1038.

[14] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. Au-
tomating neural architecture search using bayesian optimization and hyperband. In
International Conference on Learning Representations (2018).

[15] Li, W., Chen, J., and Huang, W. A survey on continuous integration, delivery and
deployment tools. Journal of Systems and Software 147 (2018), 1–15.

[16] Martin, R. C. The single responsibility principle. The principles, patterns, and prac-
tices of Agile Software Development (2002), 149–154.

[17] Merkel, D. Docker: lightweight linux containers for consistent development and de-
ployment. Linux journal 2014, 239 (2014), 2.

[18] Microsoft. Azure machine learning. https://azure.microsoft.com/en-us/services
/machine-learning/, 2021. Accessed: February 7, 2023.

[19] Microsoft. Microsoft customer stories. Microsoft Azure Blog (January 2022).
[20] Paleyes, A., Urma, R.-G., and Lawrence, N. D. Challenges in deploying machine

learning: a survey of case studies. ACM Computing Surveys 55, 6 (2022), 1–29.

https://info.algorithmia.com/hubfs/
2020/Reports/2021-Trends-in-ML/Algorithmia_2021_enterprise_ML_trends.pdf
https://azure.microsoft.com/en-us/services
/machine-learning/

68 B.E.M. MURSA ET AL.

[21] Pliuhin, V., Pan, M., Yesina, V., and Sukhonos, M. Using azure maching learning
cloud technology for electric machines optimization. In 2018 International Scientific-
Practical Conference Problems of Infocommunications. Science and Technology (PIC
S&T) (2018), IEEE, pp. 55–58.

[22] Rajagopal, S., Hareesha, K. S., and Kundapur, P. P. Performance analysis of
binary and multiclass models using azure machine learning. International Journal of
Electrical & Computer Engineering (2088-8708) 10, 1 (2020).

[23] Rezazadeh, A. A generalized flow for b2b sales predictive modeling: An azure machine-
learning approach. Forecasting 2, 3 (2020), 267–283.

[24] Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D.,
Chaudhary, V., Young, M., Crespo, J.-F., and Dennison, D. Hidden technical
debt in machine learning systems. Advances in neural information processing systems
28 (2015).

[25] Sharir, O., Peleg, B., and Shoham, Y. The cost of training nlp models: A concise
overview. arXiv preprint arXiv:2004.08900 (2020).

[26] Tan, M., and Le, Q. V. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International Conference on Machine Learning (2020), PMLR, pp. 6105–
6114.

[27] Umamahesan, A., and Babu, D. M. I. From zero to ai hero with automated ma-
chine learning. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (2020), pp. 3495–3495.

[28] Wagstaff, K. L., Doran, G., Davies, A., Anwar, S., Chakraborty, S.,
Cameron, M., Daubar, I., and Phillips, C. Enabling onboard detection of events of
scientific interest for the europa clipper spacecraft. In Proceedings of the 25th acm sigkdd
international conference on knowledge discovery & data mining (2019), pp. 2191–2201.

Faculty of Mathematics and Computer Science Babeş-Bolyai University, Cluj
Napoca, România

Email address: bogdan.mursa@ubbcluj.ro
Email address: matyas.kuti @ubbcluj.ro

Email address: cristiana.moroz@ubbcluj.ro
Email address: florentin.bota@ubbcluj.ro

	1. Introduction
	2. Related work
	3. Experiment and study plan
	3.1. Data Preparation
	3.2. Architectural Configurations of Employed Machine Learning Algorithms

	4. Comparative analysis
	5. A deeper dive into SonarQube issues
	5.1. JEdit 5.5 and 5.6
	5.2. Freemind 1.0.1 and 1.1.0
	5.3. TuxGuitar 1.5.2 and 1.5.3
	5.4. Comparison between the three datasets

	6. Conclusions and future work
	References
	1. Introduction
	2. Asynchronous operations result and chaininig
	2.1. Callbacks
	2.2. Futures

	3. Futures with continuations
	4. Composable asynchronous operations
	4.1. Basic building blocks
	4.2. Sequence
	4.3. Conditional
	4.4. Loop
	4.5. Exceptions

	5. Conclusions
	References
	1. Introduction
	2. Problem definition
	3. Advances in Automated AI Training
	4. Automating Model Training Process
	4.1. Pipelines architecture
	4.2. AzureML Pipelines
	4.3. Automating models training and deployment
	4.4. Consuming trained models

	5. Conclusions
	6. Acknowledgement
	References

