![]()
AMBIENTUM BIOETHICA BIOLOGIA CHEMIA DIGITALIA DRAMATICA EDUCATIO ARTIS GYMNAST. ENGINEERING EPHEMERIDES EUROPAEA GEOGRAPHIA GEOLOGIA HISTORIA HISTORIA ARTIUM INFORMATICA IURISPRUDENTIA MATHEMATICA MUSICA NEGOTIA OECONOMICA PHILOLOGIA PHILOSOPHIA PHYSICA POLITICA PSYCHOLOGIA-PAEDAGOGIA SOCIOLOGIA THEOLOGIA CATHOLICA THEOLOGIA CATHOLICA LATIN THEOLOGIA GR.-CATH. VARAD THEOLOGIA ORTHODOXA THEOLOGIA REF. TRANSYLVAN
|
|||||||
Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului. |
|||||||
STUDIA PHYSICA - Ediţia nr.1 din 2008 | |||||||
Articol: |
CELLULAR NEURAL NETWORK COMPUTERS AND THEIR APPLICATIONS IN PHYSICS. Autori: MÁRIA ERCSEY-RAVASZ. |
||||||
Rezumat: The computational paradigm represented by Cellular Neural/Nonlinear Networks (CNN) and the CNN Universal Machine (CNN-UM) as a Cellular Wave Computer, gives new perspectives for computational physics. Many numerical problems and simulations can be elegantly addressed on this fully parallelized and analogic architecture: solving partial differential equations and implementing cellular automata models are just some basic examples. We also study the possibility of performing stochastic simulations on this chip. First a realistic random number generator is implemented on the CNN-UM, then as an example the site-percolation problem and the two-dimensional Ising model are studied by Monte Carlo type simulations. The results obtained on an experimental version of the CNN-UM with 128×128 cells (ACE16K) are in good agreement with the results obtained on digital computers. Computational time measurements suggest that the developing trend of the CNN-UM chips - increasing the lattice size and the number of local logic memories - will assure an important advantage for the CNN-UM in the near future. Keywords. Computer modeling and simulation, Statistical physics and nonlinear dynamics, Computer science and technology PACS: 07.05.Tp, 05.10.Ln, 89.20.Ff |
|||||||
![]() |
|||||||