![]()
AMBIENTUM BIOETHICA BIOLOGIA CHEMIA DIGITALIA DRAMATICA EDUCATIO ARTIS GYMNAST. ENGINEERING EPHEMERIDES EUROPAEA GEOGRAPHIA GEOLOGIA HISTORIA HISTORIA ARTIUM INFORMATICA IURISPRUDENTIA MATHEMATICA MUSICA NEGOTIA OECONOMICA PHILOLOGIA PHILOSOPHIA PHYSICA POLITICA PSYCHOLOGIA-PAEDAGOGIA SOCIOLOGIA THEOLOGIA CATHOLICA THEOLOGIA CATHOLICA LATIN THEOLOGIA GR.-CATH. VARAD THEOLOGIA ORTHODOXA THEOLOGIA REF. TRANSYLVAN
|
|||||||
Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului. |
|||||||
STUDIA MATHEMATICA - Ediţia nr.4 din 2010 | |||||||
Articol: |
COMBINED VARIATIONAL AND SUB-SUPERSOLUTION APPROACH FOR MULTI-VALUED ELLIPTIC VARIATIONAL INEQUALITIES. Autori: . |
||||||
Rezumat: This paper provides a variational approach for a class of multi-valued elliptic variational inequalities governed by the p-Laplacian and Clarke’s generalized gradient of some locally Lipschitz function including a number of (multi-valued) elliptic boundary value problems as special cases. Since only local growth conditions are imposed on the multi-valued term, the problem under consideration is neither coercive nor of variational structure beforehand meaning that it cannot be related to the derivative of some associated (nonsmooth) potential. By combining a recently developed sub-supersolution method for multi-valued elliptic variational inequalities and a suitable modification of the given locally Lipschitz function the main goal of this paper is to construct a (nonsmooth) functional whose critical points turn out to be solutions of the problem under consideration lying in an ordered interval of sub-supersolution. Key words and phrases. Multi-valued variational inequality, p-Laplacian, Clarke’s generalized gradient, sub-supersolution, critical point, locally Lipschitz functional, comparison principle. |
|||||||
![]() |
|||||||