![]()
AMBIENTUM BIOETHICA BIOLOGIA CHEMIA DIGITALIA DRAMATICA EDUCATIO ARTIS GYMNAST. ENGINEERING EPHEMERIDES EUROPAEA GEOGRAPHIA GEOLOGIA HISTORIA HISTORIA ARTIUM INFORMATICA IURISPRUDENTIA MATHEMATICA MUSICA NEGOTIA OECONOMICA PHILOLOGIA PHILOSOPHIA PHYSICA POLITICA PSYCHOLOGIA-PAEDAGOGIA SOCIOLOGIA THEOLOGIA CATHOLICA THEOLOGIA CATHOLICA LATIN THEOLOGIA GR.-CATH. VARAD THEOLOGIA ORTHODOXA THEOLOGIA REF. TRANSYLVAN
|
|||||||
Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului. |
|||||||
STUDIA MATHEMATICA - Ediţia nr.3 din 2014 | |||||||
Articol: |
INVERSE THEOREM FOR THE ITERATES OF MODIFIED BERNSTEIN TYPE POLYNOMIALS. Autori: T.A.K. SINHA, P.N. AGRAWAL. |
||||||
Rezumat:
Gupta and Maheshwari [12] introduced a new sequence of Durrmeyer type linear positive operators Pn to approximate pth Lebesgue integrable functions on [0; 1]. It is observed that these operators are saturated with O(n-1). In order to improve this slow rate of convergence, following Agrawal et al [2], we [3] applied the technique of an iterative combination to the above operators Pn and estimated the error in the Lp- approximation in terms of the higher order integral modulus of smoothness using some properties of the Steklov mean. The present paper is in continuation of this work. Here we have discussed the corresponding inverse result for the above iterative combination Tn,k of the operators Pn: Mathematics Subject Classification (2010): 41A25, 41A27, 41A36. Keywords: Linear positive operators, iterative combination, integral modulus of smoothness, Steklov mean, inverse theorem. |
|||||||
![]() |
|||||||