![]()
AMBIENTUM BIOETHICA BIOLOGIA CHEMIA DIGITALIA DRAMATICA EDUCATIO ARTIS GYMNAST. ENGINEERING EPHEMERIDES EUROPAEA GEOGRAPHIA GEOLOGIA HISTORIA HISTORIA ARTIUM INFORMATICA IURISPRUDENTIA MATHEMATICA MUSICA NEGOTIA OECONOMICA PHILOLOGIA PHILOSOPHIA PHYSICA POLITICA PSYCHOLOGIA-PAEDAGOGIA SOCIOLOGIA THEOLOGIA CATHOLICA THEOLOGIA CATHOLICA LATIN THEOLOGIA GR.-CATH. VARAD THEOLOGIA ORTHODOXA THEOLOGIA REF. TRANSYLVAN
|
|||||||
Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului. |
|||||||
STUDIA MATHEMATICA - Ediţia nr.3 din 2009 | |||||||
Articol: |
THE CHARACTERS OF THE BLASCHKE-GROUP OF THE ARITHMETIC FIELD. Autori: ILONA SIMON. |
||||||
Rezumat: We consider a locally compact metric space, B with arithmetic addition and multiplication, which is closely related to the usual multiplication of real numbers in the dyadic system. This results a non-Archimedian local field, the so-called 2-adic local field. Some orthogonal series are studied with respect the inner product defined with the Haar-measure μ. The Blaschke-functions defined on the 2-adic field,![]() form a commutative group with respect to the function composition, the so-called Blaschke-group. We shall determine the characters of this group. By means of the exponential and tangent functions on the 2-adic field and the characters of its additive group we can identify the desired characters. We consider Fourier-series with respect to these characters and summability questions are examined. A simple recursion leads to the FFT-algorithm, the so-called Fast-Fourier Transform. Key words and phrases. p-adic theory, local fields, character groups, (C,1)-summability, Fast-Fourier Transform. |
|||||||
![]() |
|||||||
![]() |