![]()
AMBIENTUM BIOETHICA BIOLOGIA CHEMIA DIGITALIA DRAMATICA EDUCATIO ARTIS GYMNAST. ENGINEERING EPHEMERIDES EUROPAEA GEOGRAPHIA GEOLOGIA HISTORIA HISTORIA ARTIUM INFORMATICA IURISPRUDENTIA MATHEMATICA MUSICA NEGOTIA OECONOMICA PHILOLOGIA PHILOSOPHIA PHYSICA POLITICA PSYCHOLOGIA-PAEDAGOGIA SOCIOLOGIA THEOLOGIA CATHOLICA THEOLOGIA CATHOLICA LATIN THEOLOGIA GR.-CATH. VARAD THEOLOGIA ORTHODOXA THEOLOGIA REF. TRANSYLVAN
|
|||||||
Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului. |
|||||||
STUDIA MATHEMATICA - Ediţia nr.2 din 2021 | |||||||
Articol: |
GRAPH-DIRECTED RANDOM FRACTAL INTERPOLATION FUNCTION. Autori: ILDIKÓ SOMOGYI, ANNA SOÓS. |
||||||
Rezumat: DOI: 10.24193/subbmath.2021.2.01 Published Online: 2021-06-15 Published Print: 2021-06-30 pp. 247-255 VIEW PDF FULL PDF Barnsley introduced in [1] the notion of fractal interpolation function (FIF). He said that a fractal function is a (FIF) if it possess some interpolation properties. It has the advantage that it can be also combined with the classical methods or real data interpolation. Hutchinson and Rüschendorf [7] gave the stochastic version of fractal interpolation function. In order to obtain fractal interpolation functions with more exibility, Wang and Yu [9] used instead of a constant scaling parameter a variable vertical scaling factor. Also the notion of fractal interpolation can be generalized to the graph-directed case introduced by Deniz and Özdemir in [5]. In this paper we study the case of a stochastic fractal interpolation function with graph-directed fractal function. Mathematics Subject Classification (2010): 28A80, 60G18. Keywords: Fractal interpolation function, iterated function system, random fractal interpolation function. |
|||||||
![]() |
|||||||
![]() |