![]()
AMBIENTUM BIOETHICA BIOLOGIA CHEMIA DIGITALIA DRAMATICA EDUCATIO ARTIS GYMNAST. ENGINEERING EPHEMERIDES EUROPAEA GEOGRAPHIA GEOLOGIA HISTORIA HISTORIA ARTIUM INFORMATICA IURISPRUDENTIA MATHEMATICA MUSICA NEGOTIA OECONOMICA PHILOLOGIA PHILOSOPHIA PHYSICA POLITICA PSYCHOLOGIA-PAEDAGOGIA SOCIOLOGIA THEOLOGIA CATHOLICA THEOLOGIA CATHOLICA LATIN THEOLOGIA GR.-CATH. VARAD THEOLOGIA ORTHODOXA THEOLOGIA REF. TRANSYLVAN
|
|||||||
Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului. |
|||||||
STUDIA MATHEMATICA - Ediţia nr.1 din 2022 | |||||||
Articol: |
CHARACTERIZATIONS OF HILBERTIAN NORMS INVOLVING THE AREAS OF TRIANGLES IN A SMOOTH SPACE. Autori: TEODOR PRECUPANU. |
||||||
Rezumat: DOI: 10.24193/subbmath.2022.1.10 Published Online: 2022-03-10 Published Print: 2022-03-31 pp. 145-149 VIEW PDF FULL PDF In an earlier paper, we have defined the heights of a nontrivial triangle with respect to Birchoff orthogonality in a real smooth space $X$, $mbox{dim}, mbox{X} geq 2$. In the present paper, we remark that, generally, the area of a nontrivial triangle have not the same value for different heights of the triangle. The proposal of this paper is to characterize the norms of the space having property that the area of any triangle is well defined (independent of considered height). In this line, we give six equivalent properties using the directional derivative of the norm. For example, the area is well defined for all triangles if and only if Birchoff orthogonality is symmetric. Consequently, according to a well known result of Leduc, if $mbox{dim} Xgeq 3$ each of those six properties characterizes the hilbertian norms (generated by inner products). Keywords: Smooth space, strictly convex space, norm derivative, Birkho_ orthogonality, height of a triangle, hilbertian norm. Mathematics Subject Classification (2010): 54AXX. |
|||||||
![]() |
|||||||
![]() |