Rezumat articol ediţie STUDIA UNIVERSITATIS BABE┼×-BOLYAI

În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului.

 
       
         
    STUDIA MATHEMATICA - Ediţia nr.1 din 2021  
         
  Articol:   SPLIT EQUALITY VARIATIONAL INEQUALITY PROBLEMS FOR PSEUDOMONOTONE MAPPINGS IN BANACH SPACES.

Autori:  OGANEDITSE A. BOIKANYO, HABTU ZEGEYE.
 
       
         
  Rezumat:  
DOI: 10.24193/subbmath.2021.1.13

Published Online: 2021-03-20
Published Print: 2021-03-30
pp. 139-158

VIEW PDF


FULL PDF

ABSTRACT.
A new algorithm for approximating solutions of the split equality variational inequality problems (SEVIP) for pseudomonotone mappings in the setting of Banach spaces is introduced. Strong convergence of the sequence generated by the proposed algorithm to a solution of the SEVIP is then derived without assuming the Lipschitz continuity of the underlying mappings and without prior knowledge of operator norms of the bounded linear operators involved. In addition, we provide several applications of our method and provide a numerical example to illustrate the convergence of the proposed algorithm. Our results improve, consolidate and complement several results reported in the literature.
Mathematics Subject Classification (2010): 47H09, 47J20, 65K15, 47J05, 90C25.
Keywords: Pseudomonotone mapping, split equality variational inequality problem, strong convergence, variational inequality.
 
         
     
         
         
      Revenire la pagina precedentă