![]()
AMBIENTUM BIOETHICA BIOLOGIA CHEMIA DIGITALIA DRAMATICA EDUCATIO ARTIS GYMNAST. ENGINEERING EPHEMERIDES EUROPAEA GEOGRAPHIA GEOLOGIA HISTORIA HISTORIA ARTIUM INFORMATICA IURISPRUDENTIA MATHEMATICA MUSICA NEGOTIA OECONOMICA PHILOLOGIA PHILOSOPHIA PHYSICA POLITICA PSYCHOLOGIA-PAEDAGOGIA SOCIOLOGIA THEOLOGIA CATHOLICA THEOLOGIA CATHOLICA LATIN THEOLOGIA GR.-CATH. VARAD THEOLOGIA ORTHODOXA THEOLOGIA REF. TRANSYLVAN
|
|||||||
Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului. |
|||||||
STUDIA MATHEMATICA - Ediţia nr.1 din 2017 | |||||||
Articol: |
COPLEXES IN ABELIAN CATEGORIES. Autori: FLAVIU POP. |
||||||
Rezumat: DOI: https://doi.org/10.24193/subbmath.2017.0001 Published Online: 2017-03-01 Published Print: 2017-03-31 VIEW PDF: COPLEXES IN ABELIAN CATEGORIES Starting with a pair F:A-><-B:G of additive and contravariant functors which are adjoint on the right, between abelian categories, and with a class UU, we define the notion of (F,UU)-coplex, and considering an object U of A with F(U)=V projective object in B, we construct a natural duality between the category of all (F, add(U))-coplexes in A and the subcategory of B consisting in all objects in B which admit a projective resolution with all terms in the class add(V). Mathematics Subject Classification (2010): 16E30, 16D90. Keywords: Adjoint functors, duality, projective resolution, coplex References Breaz S, Finitistic n-cotilting modules, Comm. Algebra, 2009, 37(9),3152-3170; Castano-Iglesias F., On a natural duality between Grothendieck categories, Comm. Algebra, 2008, 36(6), 2079-2091; Faticoni T.G., A duality for self-slender modules, Comm. Algebra, 2007, 35(12), 4175-4182; Pop F., Natural dualities between abelian categories, Cent. Eur. J. Math., 2011, 9(5), 1088-1099. |
|||||||
![]() |
|||||||
![]() |