Rezumat articol ediţie STUDIA UNIVERSITATIS BABE┼×-BOLYAI

În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului.

 
       
         
    STUDIA MATHEMATICA - Ediţia nr.1 din 2017  
         
  Articol:   COPLEXES IN ABELIAN CATEGORIES.

Autori:  FLAVIU POP.
 
       
         
  Rezumat:  
DOI: https://doi.org/10.24193/subbmath.2017.0001
Published Online: 2017-03-01
Published Print: 2017-03-31


VIEW PDF: COPLEXES IN ABELIAN CATEGORIES

Starting with a pair F:A-><-B:G of additive and contravariant functors which are adjoint on the right, between abelian categories, and with a class UU, we define the notion of (F,UU)-coplex, and considering an object U of A with F(U)=V projective object in B, we construct a natural duality between the category of all (F, add(U))-coplexes in A and the subcategory of B consisting in all objects in B which admit a projective resolution with all terms in the class add(V).

Mathematics Subject Classification (2010): 16E30, 16D90.

Keywords: Adjoint functors, duality, projective resolution, coplex

References
Breaz S, Finitistic n-cotilting modules, Comm. Algebra, 2009, 37(9),3152-3170;
Castano-Iglesias F., On a natural duality between Grothendieck categories, Comm. Algebra, 2008, 36(6), 2079-2091;
Faticoni T.G., A duality for self-slender modules, Comm. Algebra, 2007, 35(12), 4175-4182;
Pop F., Natural dualities between abelian categories, Cent. Eur. J. Math., 2011, 9(5), 1088-1099.
 
         
     
         
         
      Revenire la pagina precedentă