![]()
AMBIENTUM BIOETHICA BIOLOGIA CHEMIA DIGITALIA DRAMATICA EDUCATIO ARTIS GYMNAST. ENGINEERING EPHEMERIDES EUROPAEA GEOGRAPHIA GEOLOGIA HISTORIA HISTORIA ARTIUM INFORMATICA IURISPRUDENTIA MATHEMATICA MUSICA NEGOTIA OECONOMICA PHILOLOGIA PHILOSOPHIA PHYSICA POLITICA PSYCHOLOGIA-PAEDAGOGIA SOCIOLOGIA THEOLOGIA CATHOLICA THEOLOGIA CATHOLICA LATIN THEOLOGIA GR.-CATH. VARAD THEOLOGIA ORTHODOXA THEOLOGIA REF. TRANSYLVAN
|
|||||||
Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului. |
|||||||
STUDIA MATHEMATICA - Ediţia nr.1 din 2008 | |||||||
Articol: |
A CUTTING PLANE APPROACH TO SOLVE THE RAILWAY TRAVELING SALESMAN PROBLEM. Autori: PETRICĂ C. POP, CHRISTOS D. ZAROLIAGIS, GEORGIA HADJICHARALAMBOUS. |
||||||
Rezumat: We consider the Railway Traveling Salesman Problem. We show that this problem can be reduced to a variant of the generalized traveling salesman problem, defined on an undirected graph G = (V,E) with the nodes partitioned into clusters, which consists in finding a minimum cost cycle spanning a subset of nodes with the property that exactly two nodes are chosen from each cluster. We describe an exact exponential time algorithm for the problem, as well we present two mixed integer programming models of the problem. Based on one of this models proposed, we present an efficient solution procedure based on a cutting plane algorithm. Extensive computational results for instances taken from the railroad company of the Netherlands Nederlandse Spoorwegen and involving graphs with up to 2182 nodes and 38650 edges are reported. | |||||||
![]() |
|||||||
![]() |