Rezumat articol ediţie STUDIA UNIVERSITATIS BABE┼×-BOLYAI

În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului.

 
       
         
    STUDIA INFORMATICA - Ediţia nr.4 din 2010  
         
  Articol:   A REINFORCEMENT LEARNING APPROACH FOR SOLVING THE MATRIX BANDWIDTH MINIMIZATION PROBLEM.

Autori:  GABRIELA CZIBULA, ISTVAN GERGELY CZIBULA, CAMELIA-MIHAELA PINTEA.
 
       
         
  Rezumat:  

In this paper we aim at investigating and experimentally evaluating the reinforcement learning based model that we have previously introduced to solve the well-known matrix bandwidth minimization problem (MBMP). The MBMP is an NP-complete problem, which is to permute rows and columns of a matrix in order to keep its nonzero elements in a band lying as close as possible to the main diagonal. The MBMP has been found to be relevant to a wide range of applications including circuit design, network survivability, data storage and information retrieval. The potential of the reinforcement learning model proposed for solving the MBMP was confirmed by the computational experiment, which has provided encouraging results.

 

Key words and phrases. Combinatorial optimization, Matrix Bandwidth Minimization, Problem, Reinforcement Learning.

 
         
     
         
         
      Revenire la pagina precedentă