![]()
AMBIENTUM BIOETHICA BIOLOGIA CHEMIA DIGITALIA DRAMATICA EDUCATIO ARTIS GYMNAST. ENGINEERING EPHEMERIDES EUROPAEA GEOGRAPHIA GEOLOGIA HISTORIA HISTORIA ARTIUM INFORMATICA IURISPRUDENTIA MATHEMATICA MUSICA NEGOTIA OECONOMICA PHILOLOGIA PHILOSOPHIA PHYSICA POLITICA PSYCHOLOGIA-PAEDAGOGIA SOCIOLOGIA THEOLOGIA CATHOLICA THEOLOGIA CATHOLICA LATIN THEOLOGIA GR.-CATH. VARAD THEOLOGIA ORTHODOXA THEOLOGIA REF. TRANSYLVAN
|
|||||||
Rezumat articol ediţie STUDIA UNIVERSITATIS BABEŞ-BOLYAI În partea de jos este prezentat rezumatul articolului selectat. Pentru revenire la cuprinsul ediţiei din care face parte acest articol, se accesează linkul din titlu. Pentru vizualizarea tuturor articolelor din arhivă la care este autor/coautor unul din autorii de mai jos, se accesează linkul din numele autorului. |
|||||||
STUDIA CHEMIA - Ediţia nr.3 din 2017 | |||||||
Articol: |
DIMENSIONALITY OF BIG DATA SETS EXPLORED BY CLUJ DESCRIPTORS. Autori: CLAUDIU LUNGU, SARA ERSALI, BEATA SZEFLER, ATENA PÎRVAN-MOLDOVAN, SUBHASH BASAK, MIRCEA V. DIUDEA. |
||||||
Rezumat: DOI: https://doi.org/10.24193/subbchem.2017.3.16 Published Online: 2017-09-30 Published Print: 2017-09-30 VIEW PDF: DIMENSIONALITY OF BIG DATA SETS EXPLORED BY CLUJ DESCRIPTORS Dimensionality of a relatively big data set (95 compounds) observed for toxicity (mutagenicity) was explored in order to compute QSAR models. Distinct molecular descriptors were used. Dimensionality of data, using PCA, correlation plots and clustering, was evaluated. Analyzing data dimensionality allowed model optimization. Docking studies and PCA were used in order to expand data dimensionality. Pearson correlation coefficient (r2) values, obtained for both perceptive and predictive models, were satisfactory. Keywords: topological descriptor, QSAR, data dimensionality, mutagenity, principal component analysis (PCA), Ames test.
|
|||||||
![]() |
|||||||